Kursovik_ISP (Двойственный симплекс-метод и доказательство теоремы двойственности), страница 3

2016-07-31СтудИзба

Описание файла

Документ из архива "Двойственный симплекс-метод и доказательство теоремы двойственности", который расположен в категории "". Всё это находится в предмете "математика" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "рефераты, доклады и презентации", в предмете "математика" в общих файлах.

Онлайн просмотр документа "Kursovik_ISP"

Текст 3 страницы из документа "Kursovik_ISP"

Очевидно, для того чтобы записать двойственную задачу, сначала необходимо систему ограничений исходной задачи привести к виду (1.12). Для этого второе неравенство следует умножить на -1.

Двойственная задача. Найти максимум линейной функции f = 2y1+ 3y2 + 6y3 + 3y4 при ограничениях

2 y1 - y2 + y3 + 2y4  1,

2y1 + y2 + y3 + y4  2,

-y1+ 4y2 - 2y3 - 2y4  3,

Для решения исходной задачи необходимо ввести четыре дополни­тельные переменные и после преобразования системы - одну искус­ственную. Таким образом, исходная симплексная таблица будет состо­ять из шести строк и девяти столбцов, элементы которых подлежат преобразованию.

Для решения двойственной задачи необходимо ввести три допол­нительные переменные. Система ограничений не требует предваритель­ных преобразований, ее первая симплексная таблица содержит четыре строки и восемь столбцов.

Двойственную задачу решаем симплексным методом (табл. 1.3).

Оптимальный план двойственной задачи Y* = (0; 1/2; 3/2; 0), fmax = 21/2.

Оптимальный план исходной задачи находим, используя оценки (m + 1)-й строки последней итерации, стоящие в столбцах A5, A6, A7 : x1 = 3/2 + 0 = 3/2; x2 = 9/2 + 0 = 9/2; x3 = 0 + 0 = 0. При оптимальном плане исходной задачи X* = (3/2; 9/2; 0) линейная функ­ция достигает наименьшего значения: Zmin =21/2.

Т а б л и ц а 1.3

i

Базис

С базиса

A0

2

3

6

3

0

0

0

A1

A2

A3

A4

A5

A6

A7

1

2

3

A5

A3

A7

0

0

0

1

2

3

2

2

-1

-1

1

4

1

1

-2

2

-1

-2

1

0

0

0

1

0

0

0

1

m + 1

Zi - Cj

0

-2

-3

-6

-3

0

0

0

1

2

3

A3

A6

A7

6

0

0

1

1

5

2

0

3

-1

2

6

1

0

0

2

-1

2

1

-1

2

0

1

0

0

0

1

m + 1

Zi - Cj

6

10

-9

0

9

6

0

0

1

2

3

A3

A2

A7

6

3

0

3/2

½

2

2

0

3

0

1

0

1

0

0

3/2

-1/2

4

½

-1/2

5

½

½

3

0

0

1

m + 1

Zi - Cj

21/2

10

0

0

9/2

3/2

9/2

0

4. Виды математических моделей двойственных задач

На основании рассмотренных несимметричных и симметричных двойственных задач можно заключить, что математические модели пары двойственных задач могут иметь один из следующих видов.

Н е с и м м е т р и ч н ы е з а д а ч и

(1) Исходная задача Двойственная задача

Zmin = CX; fmax = YA0;

AX = A0; YA С.

X  0.

(2) Исходная задача Двойственная задача

Zmax = CX; fmin = YA0;

AX = A0; YA С.

X  0.

С и м м е т р и ч н ы е з а д а ч и

(3) Исходная задача Двойственная задача

Zmin = CX; fmax = YA0;

AXA0; YA С.

X  0. Y 0.

(4) Исходная задача Двойственная задача

Zmax = CX; fmin = YA0;

AXA0; YA С.

X  0. Y 0.

Таким образом, прежде чем записать двойственную задачу для данной исходной, систему ограничений исходной задачи необходимо привести к соответствующему виду. Запишем, например, математиче­скую модель двойственной задачи для следующей исходной.

Найти минимальное значение линейной функции Z = 2x1 + x2 + 5x3 при ограничениях

x 1 – x2 – x3  4,

x1 – 5x2 + x3  5, xj  0 (j = 1, 2, 3).

2x1 – x2 + 3x3 6,

Рассматриваемая задача относится к симметричным двойственным задачам на отыскание минимального значения линейной функции. Для того чтобы было можно записать двойственную задачу, ее модель долж­на иметь вид (3). Переход осуществляется умножением первого не­равенства на -1.

Исходная задача:

Zmin = 2x1 + x2 + 5x3 при ограничениях

- x1 + x2 + x3  -4,

x1 – 5x2 + x3  5, xj  0 (j = 1, 2, 3).

2x1 – x2 + 3x3 6,

Двойственная задача:

fmin = -4x1 + 5x2 + 6x3 при ограничениях

- y1 + y2 + 2y3  2,

y1 – 5y2 - y3  1, yi  0 (i = 1, 2, 3).

2y1 + y2 + 3y3  5,

Приведем без доказательства следующую теорему. Теорема 1.1. Если при подстановке компонент оптимального пла­на в систему ограничений исходной задачи i-e ограничение обращается в неравенство, то i-я компонента оптимального плана двойственной задачи равна нулю.

Если i-я компонента оптимального плана двойственной задачи по­ложительна, то i-e ограничение исходной задачи удовлетворяется ее оптимальным решением как строгое равенство.

5. Двойственный симплексный метод

В п. 2 и п. 3 настоящего параграфа было показано, что для получения решения исходной задачи можно перейти к двой­ственной и используя оценки ее опти­мального плана, определить оптимальное решение исходной задачи.

Переход к двойственной задаче не обязателен, так как если рассмо­треть первую симплексную таблицу с единичным дополнительным ба­зисом, то легко заметить, что в столбцах записана исходная задача, а в строках - двойственная. Причем оценками плана исходной задачи являются Сj а оценками плана двойственной задачи – bi. Решим "двойственную задачу по симплексной таблице, в которой записана ис­ходная задача; найдем оптимальный план двойственной задачи, а вместе с ним и оптимальный план исходной задачи. Этот метод носит на­звание двойственного симплексного метода,

Пусть необходимо решить исходную задачу линейного программиро­вания, поставленную в общем виде: минимизировать функцию Z =СХ при АХ = A0, Х  0. Тогда в двойственной задаче необходимо максимизировать функцию f = YA0 при YA С. Допустим, что выбран такой базис D = (A1, А2, ..., Аi, ..., Аm), при котором хотя бы одна из компонент вектора Х = D-1 A0 = (x1, x2, ..., xi, ..., xm) отрицатель­ная (например, xi < 0), но для всех векторов Aj выполняется соотно­шение Zj – Cj  0 (i = 1,2, ..., n). Тогда на основании теоремы двойственности Y = Сбаз D-1 - план двойственной задачи. Этот план не оптимальный, так как, с одной стороны, при выбранном бази­се X содержит отрицательную компоненту и не является планом исходной задачи, а с другой стороны, оценки оптимального плана двой­ственной задачи должны быть неотрицательными.

Таким образом, вектор Аi, соответствующий компоненте xi < 0, следует исключить из базиса исходной задачи, а вектор, соответствую­щий отрицательной оценке,— включить в базис двойственной задачи.

Для выбора вектора, включаемого в базис исходной задачи, просмат­риваем i строку: если в ней не содержатся xij < 0, то линейная функция двойственной задачи не ограничена на многограннике реше­ний, а исходная задача не имеет решений. Если же некоторые xij < 0, то для столбцов, содержащих эти отрицательные значения, вычисля­ем 0j= min (xi/xij)  0 и определяем вектор, соответствующий max 0j(Zj — Cj) при решении исходной задачи на минимум и min 0j(Zj — Cj) при решении исходной задачи на максимум. Этот вектор и включаем в базис исходной задачи. Вектор, который необ­ходимо исключить из базиса исходной задачи, определяется направ­ляющей строкой.

Если 0j= min (xi/xij) = 0, т. е. xi = 0, то xij берется за раз­решающий элемент только в том случае, если xij > 0. Такой выбор раз­решающего элемента на данном этапе не приводит к увеличению коли­чества отрицательных компонент вектора X. Процесс продолжаем до получения Х  0; при этом находим оптимальный план двойственной задачи, следовательно, и оптимальный план исходной задачи.

В процессе вычислений по алгоритму двойственного симплексного метода условие Zj – Cj  0 можно не учитывать до исключения всех хi < 0, затем оптимальный план находится обычным симплексным ме­тодом. Это удобно использовать, если все хi < 0; тогда для перехода к плану исходной, задачи за одну итерацию необходимо 0j определить не по минимуму, а по максимуму отношений, т. е. 0j= max (xi/xij) > 0.

Двойственным симплексным методом можно решать задачи линей­ного программирования, системы ограничений которых при положи­тельном базисе содержат свободные члены любого знака. Этот метод позволяет уменьшить количество преобразований системы ограниче­ний, а также размеры симплексной таблицы.

  1. Список используемой литературы

  1. Солодовников А.С., Бабайцев В.А., Браилов А.В. Математика в экономике. «Финансы и статистика», 1998 г.

  2. Кузнецов Ю.Н., Кузубов В.И., Волощенко А.Б. Математическое программирование. «Наука», 1980 г.

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5224
Авторов
на СтудИзбе
428
Средний доход
с одного платного файла
Обучение Подробнее