48432 (Процессор персонального компьютера), страница 2

2016-07-31СтудИзба

Описание файла

Документ из архива "Процессор персонального компьютера", который расположен в категории "". Всё это находится в предмете "информатика" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "рефераты, доклады и презентации", в предмете "информатика, программирование" в общих файлах.

Онлайн просмотр документа "48432"

Текст 2 страницы из документа "48432"

10. Поток команд процессора

В отличие от классического варианта, когда весь конвейер состоит из четырех ступеней, в большинстве современных процессоров конвейер разбивается на семь и более ступеней (гиперконвейерная обработка), для чего требуется более высокая тактовая частота.

Технология гиперконвейерой обработки предполагает удвоение длины конвейера по сравнению с предыдущей микроархитектурой Р6. например, один из основных элементов конвейера – блок предсказания ветвлений и восстановления работы – разбит на 20 тактов.

В Pentium IV на ступени исполнения используется меньшее количество функциональных блоков процессора. Но каждый из них обладает более длинным и более коротким конвейером. Процессор Pentium IV может одновременно выполнять на разных ступенях по 126 инструкций. Кроме того, в Pentium IV кэш первого уровня разделен и его кэш команд находится фактически на препроцессоре. Он называется кэшем с отслеживанием (trace cache) и оказывает влияние и на конвейер, и на основной поток команд. Эта кэш - память содержит декодированные команды х86 (микрокоманды), что устраняет задержку на расшифровку кодов команд. Исполнительные устройства процессора получают непрерывный поток команд, а общее время восстановления работы при неправильном предсказании ветвления существенно сокращается.

В процессорах с микроархитектурой х86, таких как Pentium III или Athlon, команды поступают в декодер из кэша команд, где они разбиваются на меньшие части (микрокоманды). Эти микрокоманды применяются при внеочередном исполнении команд, исполнительное устройство выполняет их планирование, исполнение и сброс. Такое разбиение имеет место, когда процессор выполняет инструкцию.

КЭШ L1

Декодирование

инструкций

Планирование

Исполнение

Сброс

(обобщенная схема работы процессора х86)

Кэш команд Pentium IV принимает транслированные и декодированные микрокоманды, готовые к передаче на внеочередное исполнение, и формирует из них мини – программы («отслеживания» - traces).

Декодирование

инструкций

Тrace Сache

Планирование

Исполнение

Сброс

(схема работы процессора Pentium IV)

По мере выполнения препроцессором накопленных отслеживаний кэш с отслеживаниями посылает до трех микрокоманд за такт на внеочередное устройство исполнения. В этом случае команды не нужно транслировать или декодировать. И только в случае промаха кэше первого уровня (L1) препроцессор начнет выбирать и декодировать инструкции из кэша второго уровня (L2) – к основному конвейеру добавляется дополнительные 8 ступеней.

Кэш с отслеживаниями работает в двух режимах:

- исполнительном (execute mode);

- построения отслеживающих сегментов (trace segment build mode).

В режиме исполнения кэш L1 передает команды исполнительным устройствам. Когда наступает промах этого кэша, он переходит в режим отслеживающих сегментов. В этом режиме препроцессор выбирает команды из кэша L2, транслирует их в микрокоманды, создает отслеживающий сегмент, который затем перемещается в кэш с отслеживающими и далее выполняется. Кэш – память уровня L2 с улучшенной передачей данных объемом 256 Кб ускоряет обмен информацией между кэш – памятью уровня 2 и ядром процессора.

Улучшенная система динамического исполнения – сложное устройство предположительного исполнения, хранящие команды для исполнительных устройств. Эта система позволяет исполнительным устройствам выбирать команды из большого набора предстоящих операций.

Как было отмечено выше, процессор начинает декодирование лишь в случае промаха кэша L1. Поэтому он разработан таким образом, чтобы декодировать только одну х86 – команду за такт. Так как длинный х86 – команды декодируются в 2 или 3 микрокоманды, то чтобы не засорять кэш с отслеживаниями, поступают следующим образом. Как только при создании отслеживающего сегмента кэш с отслеживаниями встречает длинную х86 – инструкцию, он вставляет в отслеживающий сегмент метку, которая указывает ячейки оперативной памяти с последовательностью микрокоманд данной инструкции. В режиме исполнения, когда кэш с отслеживаниями будет передавать поток инструкций на ступень исполнения, при попадании на такую метку он приостановит работу и на время передаст управление потоком команд микрокоду оперативной памяти.

11. Кодовые названия

Кодовые названия процессоров Intel

Семейство 486.

Р24. Первый 32 – разрядный процессор. 1,25 млн. транзисторов; тактовая частота – 50 – 66 МГц; кэш – память L1 – 8 Кб; кэш – память L2 на матричной плате – до 512 Кб; шина данных 32 – разрядная (25 – 33 МГц); адресная шина 32 – разрядная; общая разрядность – 32.

Р24С. Последний 486 процессор с 16 Кб кэшем первого уровня; 1,6 млн. транзисторов; тактовая частота – 75 – 100 МГц; кэш первого уровня 16 Кб; кэш второго уровня на матричной плате – до 512 Кб; процессор 32 – разрядный; шина данных 32 – разрядная (25 – 33 МГц); адресная шина 32 – разрядная; общая разрядность – 32.

Семейство Pentium MMX.

Р5. Первый процессор с двухконвейерной структурой, выпускался под Socket 4; кэш – память – 16 Кб; 3,1 млн. транзисторов; технология производства – 0,8 мкм; тактовая частота – 60 – 66 МГц; L1 – 16 Кб; L2 на матричной плате – до 1 Мб; процессор 64 – разрядный; шина данных 64 – разрядная (60 – 66 МГц); адресная шина 32 – разрядная; общая разрядность – 32.

Р54. 3,3 млн. транзисторов; технология производства – 0,5 – 0,35 мкм; тактовая частота – 75 – 200 МГц; L1 – 16 Кб; L2 на матричной плате – до 1 Мб; процессор 64 – разрядный; шина данных 64 – разрядная (50 – 66 МГц); адресная шина 32 – разрядная; разъем Socket 5, позднее Socket 7.

Р55С. Расширение MMX (Multi Media eXtention), содержащее 57 команд для вычислений с плавающей точкой, увеличивающее производительность компьютера в мультимедиа приложениях; 4,5 млн. транзисторов; технология производства – 0,28 мкм; тактовая частота – 166 – 233 МГц; L1 – 32 Кб; L2 на матричной плате – до 1 Мб; процессор 64 – разрядный; шина данных 64 – разрядная (60 – 66МГц); адресная шина 32 – разрядная; общая разрядность – 32; разъем Socket 7.

Семейство Pentium Pro.

Pentium P6. Создавался как процессор для серверов и рабочих станций, имеет объединенный в одном корпусе L2 объемом 256Кб; 5,5 млн. транзисторов; технология производства – 0,35 мкм; тактовая частота – 150 – 200 МГц.

Klamath. Первый процессор линейки Pentium II и первая модель с разъемом Slot 1; технология – 0,35 мкм; тактовые частоты ядра – 233 – 300 МГц; частота шины – 66 МГц; L1 – 32 Кб; L2 – 512 Кб; конструктивное исполнение – картридж SECC.

Deschutes. Ядро процессор линейки Pentium II, сменившего Klamath; технология – 0,25 мкм; тактовые частоты ядра – 233 – 300 МГц; частота шины – 66 МГц; L1 – 32 Кб; L2 – 512 Кб; тактовая частота – 266 – 450 МГц; частота шины – 66 – 100 МГц; L2 на процессоре – 521 Кб. Разъем Slot 1; конструктивное исполнение – картридж SECC, который в старших моделях был сменен на SECC2.

Katmai. Ядро процессора Pentium III, пришедшего на смену Deschutes. Добавлен блок SSE (Streaming SIMD Extensions), расширен набор команд MMX, усовершенствован механизм потокового доступа к памяти. Технология – 0,25 мкм; тактовая частота – 450 – 600 МГц; L2 на процессоре – 512 Кб; частота шины – 100 МГц; разъем - Slot 1.

Coppermine. Ядро процессоров Pentium III и Celeron; технология – 0,18 мкм; 256 Кб L2 для Pentium III и 128 Кб – для Celeron. Частота – от533 МГц и выше. Наряду с FSB100 МГц версиями Pentium III выпущены и варианты FSB133 МГц. Последние процессоры, рассчитанные на Slot 1, постепенно были вытеснены изделиями в конструктивном исполнении FC – PGA 370, рассчитанными на разъем Socket 370. частота шины для процессоров Celeron – 66 МГц, а начиная с модели Celeron 800 – 100 МГц.

Tualatin – 256K. Кодовое наименование ядра и процессоров Socket 370 Pentium III, сделанных по технологии 0,13 мкм. Рабочая частота моделей для Desktop с частотой системной шины 100 МГц – 1,1 ГГц.

Семейство Celeron.

Covington. Первый процессор линейки Celeron. Построен на ядре Deschutes и выпускался по 0,25 – микронной технологии. Тактовая частота – 266 – 300 МГц; частота системной шины 66 МГц; L1 – 32 Кб; Slot 1.

Mendocino. L2 – 128 Кб, интегрированная на одном кристалле с ядром. Тактовая частота – 300 – 533 МГц; частота системной шины – 66 МГц; технология 0,25 мкм для Slot 1, 0,22 мкм – для Socket – 370.

Coppermine 128K. Начиная с частоты 533 МГц, у Celeron появилось ядро – Coppermine с урезанным до 128 Кб кэшем L2. по своим характеристикам этот процессор максимально близок к Pentium III, построенному на базе Coppermine, в том числе впервые для Celeron включает поддержку SSE. Частота процессора – 900 МГц и выше; технология 0,13 мкм; частота системной шины – 100 МГц.

Willamette – 128. Технология 0,18 мкм; тактовая частота – 1,6 – 2 ГГц; L1 – 8 Кб; L2 – 128 Кб; процессор 64 – разрядный; шина данных 64 – разрядная (400 МГц); разъем Socket 478.

Семейство Pentium IV.

Willamette 423. Процессор с гиперконвейеризацией (hyperpipelining) – с конвейером, состоящим из 20 ступеней. Технология 0,18 мкм; тактовая частота процессора – 1,3 – 2 ГГц; L1 – 8 Кб; L2 – 256 Кб; процессор 64 – разрядный; шина данных 64 – разрядная (400 МГц); разъем Socket 423.

Willamette 478. Технология 0,18 мкм; тактовая частота – 1,3 – 2 ГГц; L1 – 8 Кб; L2 – 256 Кб (полноскоростной); процессор 64 – разрядный; шина данных 64 – разрядная (400 МГц); разъем Socket 478.

Northwood. Производится с соблюдением технологических норм 0,13 мкм в 478 – контактном корпусе форм – фактора mPGA478 (FC – PGA2). Особенностью процессора является специальная алюминиевая пластина над кристаллом, которая одновременно выполняет функции теплоотвода и экранирующего элемента.

Prescott. Наследник ядра Northwood, будет изготавливаться по технологии 90 нм, частота системной шины 667 МГц, поддержка Hyper – Threading, Socket 478. Наследник ядра Prescott – Tejas.

Nehalem. Производится по технологии 90 нм, а в конце 2005 г. – планировалось и по технологии 65 нм.

Процессоры Intel для портативных ПК.

Dixon. Технология – 0,25 мкм и 0,18 мкм; L1 – 32 Кб; L2 – 256 Кб на чипе; тактовая частота процессора – 300 – 500 МГц; частота шины – 66 МГц. Официальная классификация – мобильные процессоры Pentium II.

Pentium III – M. Мобильные процессоры нового поколения, изготовленные с использованием технологического процесса 0,13 мкм. Имеют новые средства управления энергопотреблением SpeedStep, Deeper Sleep.

Процессоры Intel для серверов.

Xeon. Официальное наименование линейки процессоров для мощных серверов и рабочих станций. Первые варианты были построены на ядре Deschutes. Технология – 0,25 мкм; Slot 2; L2 имеет объем 512, 1024, 2048 Кб.

Tanner. Pentium III Xeon. Тактовая частота от 500 МГц; частота системной шины 100 МГц; CSRAM – кэш второго уровня объемом 512, 1024, 2048 Кб. Поддерживается MMX и SSE; L1 – 32 Кб.

Cascades. Pentium III Xeon, созданный по технологии 0,18 мкм. Это серверный вариант Coppermine. На чипе содержится L2 – 256 Кб; тактовая частота от 600 МГц; частота шины процессора – 133 МГц.

Pentium III – S. Процессоры с ядром Tualatin; технология – 0,13 мкм; кэш L2 – 512 Кб; рабочие частоты – с 1,13 ГГц. Предназначены для двухпроцессорных конфигураций.

Foster. Pentium IV в серверном варианте. Тактовая частота – 100 МГц при передаче данных с частотой 400 МГц; Socket 603.

Prestonia. Pentium IV в серверном варианте, созданный по технологии 0,13 мкм. Основную систему составляет специальный чипсет Plumas. Частота первых моделей процессора – 2,20 ГГц.

Nocona. Xeon с новым ядром, изготовленным по технологии 90 нм. Ядро Pentium IV, Prescott; L2 – 1 Мб; тактовая частота системной шины 533 – 667 МГц.

64 – разрядные процессоры Intel.

Merced. Кодовое наименование ядра и первого процессора архитектуры IA – 64; аппаратно совместим с архитектурой IA – 32. включает трехуровневую кэш – память 2 – 4 Мб. Технология изготовления – 0,18 мкм; частота ядра – 667 МГц и выше; частота шины – 266 МГц. Физический интерфейс – Slot M. официальное наименование – Itanium.

McKinley. Второе поколение процессоров архитектуры IA – 64. Тактовая частота ядра процессоров начинается с 1 ГГц. Физический интерфейс – Slot M.

Itaniym 2. Торговая марка, под которой анонсирован 64 – разрядный процессор, ранее известный под кодовым названием McKinley. Тактовая частота 1 ГГц; 3 Мб кэша L3.

Madison. Построен по 0,13 мкм технологии. Тактовые частоты первых процессоров Madison и Deerfield составили 1,5 ГГц. Оба чипа оснащены 6 Мб кэша L3 и изготавливаются по технологии 0,13 мкм.

Deerfield. Эти процессоры должны производиться по 0,13 или 0,1 мкм технологии фирмы Motorola. Ядро является преемником Foster. Процессоры рассчитаны на Slot M и позиционируются как недорогие процессоры архитектуры IA – 64 для рабочих станций и серверов среднего уровня. Тактовые частоты первых процессоров Madison и Deerfield на момент начала поставок составят как минимум 1,5 ГГц, при этом, как известно, оба чипа будут обладать 6 Мб кэша L3 и будут изготавливаться по технологии 0,13 мкм.

Montecito. Двуядерный чип на базе архитектуры IA – 64, который Intel планировал выпустить в конце 2005г.

Кодовые названия процессоров AMD

К5. Первые процессоры AMD. Разъем – Socket 7, частота системной шины 50 – 66 МГц; кэш – память L1 – 24 Кб. Кэш – память L2 расположена на материнской плате и работает на частоте процессорной шины.

К6. Процессоры – конкуренты Pentium II. Первые модели производились по технологии 0,35 мкм (кодовое имя Little Foot). Процессоры работали на частоте от 166 до 233 МГц; кэш – память L1 – 64 Кб (по 32 Кб для команд и данных).

К6 – 2. Поколение К6 с кодовым именем Chomper. Поддержка дополнительного набора инструкций 3D Now! И частоты системной шины 100 МГц. Кэш – память L1 – 64 Кб; кэш L2 находится на материнской плате и может иметь объем от 512 Кб до 2 Мб, работая на частоте шины процессора.

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5137
Авторов
на СтудИзбе
440
Средний доход
с одного платного файла
Обучение Подробнее