48251 (Программирование и достижения компьютерной техники), страница 3

2016-07-31СтудИзба

Описание файла

Документ из архива "Программирование и достижения компьютерной техники", который расположен в категории "". Всё это находится в предмете "информатика" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "рефераты, доклады и презентации", в предмете "информатика, программирование" в общих файлах.

Онлайн просмотр документа "48251"

Текст 3 страницы из документа "48251"

Глобальные вычислительные сети — это сети, использующие информационные ресурсы ЛВС, расположенных на большом рас­стоянии друг от друга (передача осуществляется с помощью теле­фонной сети через модемы или по выделенным каналам). Наиболее популярной является сеть Интернет, представляющая собой обще­мировую совкупность сетей, связывающая между собой миллионы компьютеров.

Сети позволили эффективно использовать аппаратные средства, программные средства и такие многопользовательские системы, как электронная почта, информационные системы на основе баз дан­ных, телеконференции и др. Особой популярностью пользуется сис­тема WWW (World Wide Web) — Всемирная паутина, т. е. всемирная распределенная база гипертекстовых документов. Пользователи, ис­пользуя для программирования язык гипертекстовой разметки HTML, создают свои сайты любой тематики и легко могут получать многообразную информацию, общаться с миллионами пользовате­лей компьютеров. В будущем планируется массовое использование так называемых информационных роботов (Knowbot) — новых сис­тем поиска и обработки информации в сети, в основе которых име­ются уже элементы экспертных систем, позволяющих анализиро­вать искомую информацию и готовить ее для выдачи в форме пре­зентаций.

С Интернетом тесно связаны понятия «киберпространство» и «виртуальная реальность». Киберпростраиством называют совокупность всех систем компьютерных коммуникаций и потоков информации, циркулирующих в мировых сетях. Виртуальная реальность — фантастический мир, создаваемый на экране компьютера, образы реального мира и процессов, в нем происходящих. С этими объек­тами и процессами можно работать как с реальными, проводить различные исследования, имитировать всевозможные ситуации, создавать прекрасные тренажеры для применения полученных на­выков в реальности. Поле деятельности для программистов огром­ное, поэтому общество заинтересовано в высококвалифицирован­ных специалистах этого профиля.

Что могут ЭВМ

Главная способность ЭВМ — способность к имитации объектов, явлений, механизмов, даже таких, которые не существуют в природе. Эта способность в сочетании с быстродействием — до миллиардов операций в секунду — основа эффективности ЭВМ.

Жизненные задачи обычно не являются четко сформулирован­ными. Поэтому, прежде чем обратиться к ЭВМ для решения зада­чи, задачу нужно четко сформулировать. Четкая формулировка задачи всегда основана на некоторых упрощающих предположениях, которые позволяют построить модель задачи, т. е. определить, что будет служить исходными данными, а что — результатом, и какова связь между исходными данными и результатом.

Для одной и той же задачи могут быть созданы разные модели, в зависимости от того, какие средства используются для ее создания, и какие предположения положены в ее основу.

Выбор исходных данных, описание результатов и соотношений в модели задачи зависят также от возможностей того, кто будет ее решать. Если задачу будет решать ЭВМ, «умеющая», например, только вычислять, то исходные данные и результаты должны быть представлены числами, а связи между ними — математическими соотношениями. Иначе говоря, нужно построить матема­тическую модель задачи. Это означает — выделить предположе­ния, на которых будет основана математическая модель; опре­делить, что считать исходными данными и результатами; за­писать математические соотношения (формулы, уравнения, не­равенства и так далее), связывающие результаты с исходными данными.

Если задача заменена ее моделью, то и ответ относится к модели и лишь опосредованно — к исходной задаче.

Созданием математической модели завершается первый этап решения задачи с помощью компьютера. Второй этап — составле­ние алгоритма (четкой инструкции, строго указывающей необхо­димую последовательность действий).

ЭВМ могут выполнять алгоритмы без участия человека, авто­матически. Но для этого нужно составить программу, т. е. за­писать алгоритм на одном из языков программирования.

Модель всегда основана на тех или иных упрощениях. Поэтому, проведя вычисления на ЭВМ, необходимо сопоставить результаты с экспериментальными фактами, теоретическими воззрениями и Другой информацией об изучаемом объекте. При этом может возникнуть необходимость уточнить математическую модель, полнее учитывая особенности изучаемого объекта. Уточнив модель, снова составляют алгоритм, проводят расчеты на ЭВМ и анализируют результаты, и так до тех пор, пока анализ результатов не покажет их приемлемое соответствие знаниям об изучаемом объекте. Проведение расчетов на ЭВМ и анализ результатов называется вычислительным экспериментом. Таким образом, в третий этап решения задачи с помощью компьютера помимо написания программы, входит вычислительный эксперимент.

Перевод задач на язык математики позволяет подключить для их решения мощные математические методы. Так, очень часто возникает задача изучения некоторой функции. Один из методов изучения функции с помощью ЭВМ — разбиение ее области опре­деления на маленькие промежутки. При этом предполагают, что на каждом из отрезков функция постоянна и меняется «мгновен­но» в конце каждого промежутка. Как правило, при измельчении отрезков разбиения нужная информация о функции может быть получена с любой точностью. Достоинство этого метода — в том, что вместо функции рассматривается конечное множество чисел.

История развитие ЭВМ

В развитии вычислительной техники можно выделить предысторию и четыре поколения электронных вычислительных машин. Впереди создание ЭВМ пятого поколения. Развитие ЭВМ, по-видимому, ярче всего отражает динамику научно-технического прогресса второй половины XX в.

Предыстория развития вычислительной техники начинается с глубокой древности. Одним из первых средств счета были китайские счеты (суан-пан), римские счеты (абак) и русские счеты, которые до сих пор пытаются конкурировать с современной вычислительной техникой.

Прошло много лет, прежде чем появилась первая счетная машина, которую в 1642 г. изобрел французский математик Влез Паскаль. Эта машина была построена на основе зубчатых колес и могла суммировать десятичные числа. Впечатление о «способностях» этой машины выска­зал сам Паскаль, который сказал, что «арифметическая машина производит действие, приближающееся к мысли больше, чем все, что делают животные».

Первую арифметическую машину, выполняющую все четыре арифметических действия, создал в 1673 г. немецкий математик Лейбниц. Эта арифметическая машина послужила прототипом арифмометров, которые начали произво­диться серийно с 1820 г. и использовались вплоть до 60-х годов XX в.

Одновременно с широким распространением арифмометров появилась идея создания универсальной программируемой счетной машины, выдвинутая в 1823 г. английским математиком Чарльзом Беббиджем. Задуманный им проект машины содержал все основные устройства вычислительных машин: память, арифметическое устройство и устройство управления, устройство ввода и устройство печати. Проект этой машины реализовывался 70 лет, но его воплощение так и не было - завершено. Однако вычислительные программы для этой машины были созданы! Их составила дочь Джона Байрона герцогиня Ада Лавлейс, которая по праву считается первой женщиной-программистом. В ее честь назван язык программирования Ада.

Из-за сложности и механического износа деталей проект Беббиджа, опережавший технические возможности своего времени, так и остался нереализованным. И только через 100 лет, в 40-х годах XX в., удалось создать программируемую счетную машину на основе электромеханических реле. Реле — это элемент, имеющий два рабочих состояния: «включено» и «выключено». Важно отметить, что при проектировании этих электромеханических счетных машин использовался аппарат математической логики.

Именно в 40-е годы начался бурный прогресс научных и технических новшеств в промышленности и вычислительной технике. Не успели начать серийно выпускать электромеханические счетные машины, как появились первые ЭВМ, в которых логические элементы были реализованы на основе радиоламп.

Первая электронная вычислительная машина «ЭНИАК» была создана в США после второй мировой войны, в 1946 г. В группу создателей действующей ЭВМ входил один из самых выдающихся ученых XX в.— Джон фон Нейман, который и предложил основные принципы построения и функционирования универсальных программируемых вы­числительных машин. Именно в соответствии с его идеями современные ЭВМ состоят из процессора, арифметического устройства, устройств ввода-вывода и памяти для хранения данных и программ.

Одновременно над проектами электронных вычислитель­ных машин работали в Англии, где первая универсальная ЭВМ появилась в 1949 г., и в СССР, где первая электронно-вычислительная машина, получившая название МЭСМ (малая электронно-счетная машина), была разработана в 1950 г., а первая советская большая ЭВМ -- БЭСМ появилась в 1952 г.

ЭВМ первого поколения изготовлялись на основе вакуумных электронных ламп. Эти ЭВМ размещались в нескольких больших металлических шкафах, занимавших целые залы и требовавших сложнейшей системы охлаждения. Работа на ЭВМ производилась за пультом, где можно было видеть состояние каждой ячейки памяти и любого регистра. Программы для ЭВМ первого поколения составлялись в машинных кодах — в виде длинных после­довательностей двоичных чисел. Занимались этим исклю­чительно математики, выполнявшие на ЭВМ сложнейшие расчеты.

Следующее, второе поколение ЭВМ появилось через 10 лет— -в 60-х годах. В этих ЭВМ логические элементы реализовывались уже не на радиолампах, а на базе полупроводниковых приборов-транзисторов. Это позволило значительно увеличить надежность машин, сократить их размеры и потребление электроэнергии. Тем самым открылся путь для серийного производства ЭВМ.

В составе ЭВМ второго поколения появились печатающие устройства для вывода, телетайпы для ввода и магнитные накопители для хранения информации. Диалог человека с ЭВМ стал более естественным благодаря появ­лению языков программирования высокого уровня, таких, как Фортран, Алгол, Бейсик и др. Начали создаваться первые автоматизированные системы, а базе ЭВМ.

Для появления третьего поколения ЭВМ вновь понадо­билось всего лишь около 10 лет. Их основу составляли интегральные микросхемы, содержавшие на одной полупро­водниковой пластинке сотни или тысячи транзисторов. Благодаря этому уменьшились размеры ЭВМ, потребление ими электроэнергии и стоимость компьютеров.

В состав ЭВМ третьего поколения были включены удоб­ные устройства ввода-вывода и накопления, информации (дисплеи) на основе электронно-лучевых трубок, накопители на магнитных лентах и дисках, графопостроители и т. п. Количество компьютеров к этому времени достигло уже десятков и сотен тысяч. К работе с этими ЭВМ стал под­ключаться широкий круг специалистов: инженеры, техники. Вычислительные машины появились в университетах и институтах. Начали создаваться операционные системы, базы данных, языки структурного программирования, пер­вые системы «искусственного интеллекта», стали внедряться системы автоматизированного проектирования и управле­ния и т. п.

Для появления ЭВМ четвертого поколения вновь потребовалось 10 лет. Они были созданы и выпущены в массовое производство на рубеже 80-х годов. Элементной базой этих ЭВМ стали большие интегральные схемы (БИС), в которых на одном кристалле кремния размещаются уже десятки и сотни тысяч логических элементов. Такие интегральные схемы позволяют создавать на одном-единственном кристалле программируемые блоки управления различными устройствами. Малые габариты и слабые токи, необходимые для их работы, позволяют устанавливать эти процессоры в любое техническое изделие: в телевизоры, стиральные машины, автомобили и т. д. Тем самым открывается возможность создания принципиально новых, программно управляемых технических устройств.

Наиболее яркими представителями ЭВМ четвертого поколения служат персональные ЭВМ, габариты которых позволяют устанавливать их на любом рабочем месте. В состав этих ЭВМ включаются удобные средства накопления, ввода и предоставления информации: накопители на гибких магнитных дисках, цветные графические дисплеи, графические планшеты, компактные печатающие устройства.

Массовое распространение персональных ЭВМ изменило требования к программам. Главными из этих требований стали: простота . правил работы, эстетичность, надежность программ, универсальность их функций, простота обучения работе на ЭВМ. Десятки миллионов персональных ЭВМ, устанавливаемых в службах сервиса и управления, на производстве и в образовании, требуют овладения компьютерной грамотностью от всего взрослого населения, а также подготовки специалистов по созданию, развитию и применению ЭВМ.

Следующее, пятое поколение ЭВМ должно прийти на смену ЭВМ четвертого поколения еще до конца этого столетия. Элементной базой этих ЭВМ булут служить сверхбольшие интегральные схемы (СБИС), которые будут отличаться колоссальной плотностью размещения логических элементов на кристалле. Работа этих схем будет основана на принципах логического вывода, подобных принципам работы программ на языке Пролог. Главным же будет существенное увеличение электронной памяти в этих схемах, которая послужит базой для их «интеллекта». Предпола­гается, что широко распространится ввод информации в ЭВМ с голоса, общение с машиной на естественном языке, машинное зрение, машинное осязание, создание «интеллектуальных» роботов и робототехнических устройств.

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5231
Авторов
на СтудИзбе
425
Средний доход
с одного платного файла
Обучение Подробнее