48059 (Побудова надійних операційних систем, що допускають наявність ненадійних драйверів пристроїв), страница 2

2016-07-31СтудИзба

Описание файла

Документ из архива "Побудова надійних операційних систем, що допускають наявність ненадійних драйверів пристроїв", который расположен в категории "". Всё это находится в предмете "информатика" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "рефераты, доклады и презентации", в предмете "информатика, программирование" в общих файлах.

Онлайн просмотр документа "48059"

Текст 2 страницы из документа "48059"

Системи з мінімальним ядром

На іншому полюсі знаходиться мінімальне ядро, що містить лише чистий механізм і ніякої політики. Мінімальна ядро включає обробники переривань, механізм для запуску та зупинки процесів (шляхом завантаження регістрів MMU і ЦП), планувальник і механізм підтримки міжпроцесної комунікацій; в ідеальному випадку більше в ядро не входить нічого. Підтримка функціональних можливостей стандартної операційної системи, представлених у монолітному ядрі, переміщається в користувальницьке адресний простір, і відповідний код більше не виконується на найбільш привілейованому рівні.

Поверх мінімального ядра можливі різні організації операційної системи. Одним з варіантів є виконання всієї операційної системи в одному сервері в режимі користувача, але в такій архітектурі існують ті ж проблеми, що і в монолітній системі, і помилки, як і раніше можуть призвести до аварійного відмови всієї операційної системи, що виконується в режимі користувача. У розд. 6 ми обговоримо деякі роботи в цій області.

Кращим рішенням є виконання кожного ненадійного модуля в режимі користувача в окремому процесі, ізольованому від інших процесів. Ми до крайності захопилися цією ідеєю і повністю роздрібнили свою систему, як показано на рис. 2. Усі функціональні компоненти операційної системи, такі як драйвери пристроїв, файлова система, сервер мережі та високорівневе управління пам'яттю, виконуються як окремі процеси в режимі користувача у власному адресному просторі. Цю модель можна визначити, як мультисерверного операційну систему.

З логічної точки зору наші користувальницькі процеси можна розбити на три рівні, хоча з точки зору ядра всі вони є всього лише процесами. Найнижчий рівень процесів, які виконуються в режимі користувача, займають драйвери пристроїв, кожен з яких керує деякими пристроєм. Ми реалізували драйвери для інтерфейсу IDE, гнучких і жорстких дисків, клавіатури, дисплеїв, аудіо-пристроїв, принтерів і різних карт Ethernet. Вище рівня драйверів знаходяться серверні процеси. У їх число входять файловий сервер, сервер процесів, мережевий сервер, інформаційний сервер, сервер реінкарнації та інші. Над рівнем серверів виконуються звичайні користувальницькі процеси, включаючи різні інтерпретатори shell, компілятори, утиліти та прикладні програми. Не рахуючи невеликого числа виключень, сервери і драйвери є нормальними для користувача процесами.

Щоб уникнути будь-якої неясності ще раз зауважимо, що кожний сервер або драйвер виконується у вигляді окремого користувача процесу з власним адресним простором, повністю відокремленим від адресного простору ядра і інших серверів, драйверів і процесів користувачів. У нашій архітектурі процеси не поділяють будь-яке адресний простір і можуть спілкуватися один з одним лише з використанням механізму IPC, забезпечуваного ядром. Цей аспект є критичним для надійності, оскільки він запобігає поширенню збоїв одного сервера або драйвера на інші сервери або драйвери подібно до того, як помилка при компіляції програми, що виникає в одному процесі, не впливає на те, що робить браузер в іншому процесі.

Під час роботи в режимі користувача можливості процесів операційної системи обмежені. Тому для підтримки виконання необхідних від них завдань серверами і драйверами ядро експортує ряд системних викликів, які можуть вироблятися авторизованими процесами. Наприклад, драйвери пристроїв більше не мають привілеїв на безпосереднє виконання вводу-виводу, але можуть вимагати від ядра виконання відповідних дій від свого імені. Крім того, сервери та драйвери можуть запитувати сервіси один в одного. Всі такі IPC проводяться шляхом обміну невеликими повідомленнями фіксованого розміру. Цей обмін повідомленнями реалізується шляхом звернень до ядра, яке до виконання запитуваної дії перевіряє, авторизований чи відповідним чином викликає процес.

Розглянемо типовий виклик ядра. Компоненту операційної системи, що виконується в режимі користувача в деякому процесі, може знадобитися скопіювати дані в інше адресний простір чи з нього, але йому неможливо довірити можливість доступу до фізичної пам'яті. Натомість цього забезпечуються виклики ядра для копіювання з допустимих віртуальних адрес або в ці адреси сегмента даних цільового процесу. Цей виклик надає набагато більш слабкі можливості, ніж запис в будь-яке слово фізичної пам'яті, але все-таки ці можливості досить потужні, і тому можливість такого виклику надається тільки процесам операційної системи, яким потрібно копіювання блоків даних з одного адресного простору в інше. Для звичайних користувальницьких процесів подібні виклики заборонені.

Після приведення цього опису структури операційної системи ми можемо тепер пояснити, яким чином користувальницькі процеси отримують сервіси операційної системи, визначені в стандарті POSIX. Користувальницький процес, який бажає виконати, наприклад, виклик READ, формує повідомлення, що містить номер системного виклику і (покажчики на) параметри, і звертається до ядра із запитом посилки цього невеликого запитної повідомлення файлового сервера, що є іншим призначеним для користувача процесом. Ядро забезпечує блокування викликає процесу до тих пір, поки його запит не буде опрацьовано файловим сервером. За замовчуванням усі комунікації між процесами забороняються з міркувань безпеки, але цей запит досягає мети, оскільки комунікації з файловим сервером явно вирішуються звичайним користувальницьким процесам.

Якщо запитувані містяться в буферному кеші файлового сервера, то він виробляє виклик ядра із запитом копіювання цих даних в буфер користувача. Якщо у файлового сервера відсутні необхідні дані, то він посилає повідомлення дисковому драйверу із запитом потрібного блоку. Тоді дисковий драйвер видає команду диска на читання цього блоку прямо за адресою всередині буферного кешу файлового сервера. Коли передача даних з диска завершується, дисковий драйвер посилає файлового серверу повідомлення у відповідь, що містить стан запиту (успіх або причина невдачі). Після цього файловий сервер робить виклик ядра із запитом копіювання блоку в користувальницьке адресний простір.

Ця схема проста і елегантна, вона дозволяє відокремити сервери і драйвери від ядра і дозволяє замінювати їх простим чином, що сприяє модульності системи. Хоча тут потрібно до чотирьох повідомлень, вони передаються дуже швидко (в межах 500 наносекунд на повідомлення в залежності від ЦП). Якщо і відправник, і одержувач готові до комунікації, те ядро копіює повідомлення прямо з буфера відправник у буфер одержувача без його переміщення в адресний простір ядра. Крім того, число копіювань даних є точно таким же, як в монолітній системі: диск поміщає дані прямо в буферний кеш файлового сервера, та є одне копіювання з цього кеша в адресний простір користувацького процесу.

Принципи розробки

Перш ніж перейти до докладного розгляду властивостей надійності нашої системи, коротко обговоримо принципи розробки, якими ми керувалися у прагненні до надійності:

  1. Простота.

  2. Модульність.

  3. Найменша авторизація.

  4. Відмовостійкість.

По-перше, ми зберігаємо свою систему настільки простий, наскільки це можливо, так що її легко зрозуміти, і можна з більшою вірогідністю підтримувати її в коректному стані. Це відноситься як до високорівневих проектування, так і до реалізації. Наша розробка дозволяє структурно уникнути відомих проблем, таких як вичерпання ресурсів. При потребі ми явно обмінюємо ресурси та ефективність на надійність. Наприклад, в ядрі статично оголошуються всі структури даних замість того, щоб динамічно виділяти пам'ять при необхідності. Хоча ми можемо недоіспользовать деяку пам'ять, цей підхід є дуже простим і ніколи не призводить до помилок. Іншим прикладом є те, що ми навмисне не реалізували нитки. Може бути, ми заплатили за це деякою втратою ефективності (а може бути, і ні), але зате не повинні турбуватися про потенційних «станах гонок» (race condition) і синхронізації, що істотно полегшує життя програмістам.

По-друге, ми розділили свою систему на набір невеликих незалежних модулів. Використання властивостей модульності, таких як обмеження розповсюдження збоїв, є ключовим елементом розробки нашої системи. Шляхом повного поділу операційної системи на модулі ми можемо встановити «брандмаери», крізь які не можуть розповсюджуватися помилки, що призводить до більш надійної системи. Для запобігання непрямого впливу збоїв в одному модулі на який-небудь інший модуль ми структурним чином зменшуємо їх взаємозалежність, наскільки це можливо. У тих випадках, коли це неможливо через природи модулів, ми застосовуємо додаткові засоби підтримки безпеки. Наприклад, файлова система залежить від драйверів пристроїв, але вона розробляється таким чином, щоб бути готовою до обробки збоїв драйвера.

По-третє, ми забезпечуємо дотримання принципу найменшої авторизації. Хоча ізоляція збоїв допомагає стримувати їх поширення, збій у повноважному модулі все ще може викликати значний збиток. Тому ми знижуємо рівень привілеїв всіх користувальницьких процесів до гранично припустимого мінімуму. У ядрі підтримуються бітові масиви і списки, які визначають можливості процесів. Зокрема, є шкала допустимих викликів ядра і список допустимих адрес призначення повідомлень. Ця інформація зберігається в елементах таблиці процесів, і тому її можна строго контролювати, і нею просто керувати. Інформація про авторизацію ініціюється під час завантаження системи, головним чином, на основі конфігураційних таблиць, створюваних системним адміністратором.

По-четверте, при розробці системи ми явним чином враховуємо можливість до стійкості до деяких збоїв. Всі сервери та драйвери управляються і відслідковуються спеціальним сервером, званим сервером реінкарнації, який може справлятися з двома видами проблем. Якщо системний процес завершується непередбачуваним чином, це негайно розпізнається, і процес перезапускається. Крім того, періодично перевіряється стан кожного системного процесу для перевірки його правильного функціонування. Якщо процес функціонує неправильно, він примусово завершується і перезапускається. Так працює механізм відмовостійкості: зіпсований компонент замінюється, але система весь час продовжує працювати.

5. Властивості надійності

Ми вважаємо, що в нашій розробці надійність системи підвищується в порівнянні з усіма іншими існуючими операційними системами за рахунок застосування трьох важливих підходів:

Зменшується кількість критичних збоїв.

Скорочується обсяг шкоди, яка може бути заподіяна будь-який помилкою.

Можна відновити після поширених збоїв.

У наступних підрозділах ми пояснимо, чому застосування цих підходів дозволяє підвищити надійність. Ми також порівняємо вплив деяких класів помилок на нашу систему з тим, як вони впливають на монолітні системи, такі як Windows, Linux і BSD. У розд. 6 ми порівняємо наш підхід до підвищення надійності з іншими ідеями, пропонованими в літературних джерелах.

Скорочення числа помилок в ядрі

Нашої першою лінією захисту є дуже невелике ядро. Добре відомо, що в більшому за обсягом коді міститься більша кількість помилок, і тому чим менше ядро, тим менше в ньому помилок. Якщо в якості нижньої оцінки використати 6 помилок на 1000 рядків виконуваного коду [27], то за наявності 3800 рядків виконуваного коду в ядрі буде присутній, як мінімум, 22 помилки. Крім того, 3800 рядків коду (менше 100 сторінок лістингу, включаючи заголовки та коментарі) – це досить мало, щоб весь цей код міг зрозуміти один чоловік; це істотно підвищує шанси на те, що з часом всі помилки вдасться знайти.

На відміну від цього, в ядрі монолітної системи, такий як Linux, розміром в 2.5 мільйона рядків виконуваного коду, ймовірно, повинно міститися не менше 6 * 2500 = 15,000 помилок. Крім того, за наявності системи з декількох мільйонів рядків ні одна людина не може прочитати весь вихідний код і повністю зрозуміти, як він працює, що зменшує шанси на знаходження всіх помилок.

Зниження потенційного впливу помилок

Звичайно, зменшення розміру ядра не призводить до скорочення обсягу всього коду системи. При цьому всього лише велика частина системи починає працювати в режимі користувача. Однак саме це зміна надає глибоке вплив на надійність. У коду ядра є можливість повного доступу до всього, що може робити машина. Помилки в ядрі можуть призводити до випадкової ініціалізації введення-виведення, виконання неправильного вводу-виводу, пошкодження таблиць розподілу пам'яті та іншим речам, які не можуть зробити непривілейованих програми, які виконуються в режимі користувача.

Тому ми не стверджуємо, що переведення більшої частини операційної системи в призначений для користувача режим призводить до скорочення загальної кількості наявних помилок. Ми стверджуємо лише те, що ефект прояви помилки при виконанні програми в режимі користувача є менш руйнівним, ніж той, який проявляється при виконанні програми в режимі ядра. Наприклад, аудіо-драйвер, що виконуються в режимі користувача, при спробі використання невірного покажчика насильно завершується сервером процесів, аудіоапаратура перестає працювати, але на іншу частину системи це не впливає.

Для порівняння розглянемо вплив помилки в аудіо-драйвері, що виконуються в режимі ядра. Цей драйвер може ненавмисно перезаписати в стеку адресу повернення зі своєї процедури і зробити при виконанні повернення довільний перехід в монолітне ядро. Цей перехід може привести до коду управління пам'яттю, викликаючи руйнування ключових структур даних, таких як таблиці сторінок і списки вільних і зайнятих ділянок пам'яті. Монолітні системи в цьому відношенні є дуже крихкими і легко руйнуються при прояві помилки.

Відновлення після збоїв

Сервери і драйвери запускаються і контролюються системним процесом, званим сервером реінкарнації. Якщо контрольований процес непередбачених чи аварійних чином завершується, це негайно розпізнається, оскільки сервер процесів оповіщає сервер реінкарнації про завершення сервера або драйвера, і процес автоматично перезавантажиться. Крім того, сервер реінкарнації періодично опитує всі сервери і драйвери на предмет їхнього стану. Якщо який-небудь з цих процесів не відповідає правильним чином протягом встановленого інтервалу часу, то сервер реінкарнації насильно завершує і перезапускає погано провідні себе сервери та драйвери. Оскільки дуже багато помилок введення-виведення бувають нестійкими, що проявляються при рідко виникають тимчасових співвідношеннях, синхронізаційних глухий кут і т.д., простий перезапуск драйвера усуває проблему.

Збій драйвера має наслідки і для файлової системи. Можуть бути втрачені невиконані запити вводу-виводу, і в деяких випадках інформація про помилку вводу-виводу доводиться до відома програми. Однак у багатьох випадках можливе повне відновлення. Більш докладне обговорення сервера реінкарнації і надійності на рівні додатків наводиться в розд. 4.

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5183
Авторов
на СтудИзбе
435
Средний доход
с одного платного файла
Обучение Подробнее