46874 (Багатопараметровий вихорострумовий перетворювач для безконтактного контролю провідних трубчатих виробів), страница 2

2016-07-31СтудИзба

Описание файла

Документ из архива "Багатопараметровий вихорострумовий перетворювач для безконтактного контролю провідних трубчатих виробів", который расположен в категории "". Всё это находится в предмете "информатика" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "рефераты, доклады и презентации", в предмете "информатика, программирование" в общих файлах.

Онлайн просмотр документа "46874"

Текст 2 страницы из документа "46874"

Публікації: основні результати дисертації опубліковані в 7 наукових працях, у тому числі 4 статті в наукових журналах і 3 роботи в працях міжнародних науково-технічних конференціях.

Структура дисертації. Дисертаційна робота складається зі вступу, чотирьох розділів, заключення, списку використаних джерел та додатків. Повний обсяг дисертації складає 188 сторінок: 38 ілюстрацій на 29 стор., 6 таблиць на 6 стор., додаток на 22 стор., список літератури містить 102 найменування на 9 стор.

ОСНОВНИЙ ЗМІСТ РОБОТИ

У вступній частині зазначена актуальність теми дослідження, відмічено зв’язок роботи з науковими темами, вказана мета дисертаційної роботи та сформульовані основні задачі дисертації, показана наукова новизна та її практичне значення, розглянуто особистий внесок автора у друкованих працях із співавторами, наведена апробація роботи та структура дисертації.

У першому розділі проаналізовано відомі методи та пристрої для визначення електромагнітних і геометричних параметрів виробів у змінних магнітних полях. Наведено конструкції різних видів датчиків для неруйнівного контролю виробів різних конфігурацій. Розглянуто двох і трьох параметрові методи і засоби електромагнітного контролю магнітної проникності, питомої електричної провідності і радіусу суцільних циліндричних виробів і зразків у повздовжніх та поперечних зондуючих магнітних полях. Відмічена важливість багатопараметрового контролю виробів, який дає можливість одержати повну інформацію про об’єкт контролю. Встановлено, що методи і перетворювачі для визначення магнітних, електричних та геометричних параметрів трубчастих феромагнітних, слабомагнітних і немагнітних виробів недостатньо описані в існуючій літературі. Останній фактор надав поштовх подальшої розробки таких методів і засобів, які і розглянуті у цій дисертації.

У другому розділі розглянуто електромагнітний метод і реалізуючі його установки з трансформаторним ТЕМП і параметричним ПЕМП перетворювачами для безконтактного контролю відносної магнітної проникності r і питомої електричної провідності циліндричних трубчастих виробів і зразків.

На рис. 1 показаний зовнішній вигляд прохідного електромагнітного перетворювача з циліндричним трубчастим виробом. Як видно, всередині перетворювача існують 3 змінних магнітних потоки Ф1, Ф2 і Ф3, тобто у повітряному зазорі, у стінці труби і у повітряному середовищі всередині труби, відповідно. На основі рівнянь Максвела і закону Ома було наведено рівняння дифузії синусоїдального за часом магнітного поля у провідну трубу. Рішення цього рівняння з граничними умовами дало можливість одержати співвідношення для визначення розподілу напруженості магнітного поля у стінці і всередині труби. Проінтегрував це співвідношення за поперечним перерізом труби, знайдемо вирази для магнітних потоків Ф2 и Ф3. узявши геометричну суму цих двох потоків знайдемо вираз для розрахунку сумарного магнітного потоку Ф23 у стінці та всередині трубчатого виробу. Після цього був введений комплексний параметр , який характеризує питомий нормований магнітний потік у трубі на одиницю r.

, (1)

, (2)

де

A=ber1xker1y-bei1xbei1y-ker1xber1y+kei1xbei1y; (3)

B=bei1xker1y+ber1xkei1y-kei1xber1y-ker1xbei1y; (4)

C=-berxkei1y-beixker1y+keixber1y+kerxbei1y; (5)

D=berxker1y-beixkei1y-kerxber1y+keixbei1y; (6)

A1=bei1xkery+ber1xkeiy-ker1xbeiy-kei1xbery; (7)

B1=bei1xkeiy-ber1xkery+ker1xbery-kei1xbeiy; (8)

C1=berxkery-beixkeiy-kerxbery+keixbeiy; (9)

D1=beixkery+berxkeiy-keixbery-kerxbeiy. (10)

Зазначено, що berх-, beiх-, berу-, beiу-, – функції Кельвіна нульового і першого порядків від аргументів, узагальнених параметрів х і у, причому

, (11)

, (12)

а і b – зовнішній і внутрішній радіуси труби; f – частота змінення магнітного поля.

Зв’язок між параметрами х і у здійснюється виразом

, (13)

де d – товщина стінки труби; тобто d=а–b.

Функції Кельвіна протабульовані у довідковій літературі. Тому можна знайти універсальні залежності фазового кута та модуля параметра K від х при різних значеннях d/a для феромагнітних труб (з r50, практично важливий випадок). Ці залежності представлені на рис. 2 і 3.

Аналогічні залежності фазового кута і модуля K від х для різних d/a були одержані при використанні немагнітних труб.

На основі універсальних функцій =f(х) і K=f(х) можна розробити алгоритм сумісного визначення значень r і матеріалу трубчастих виробів. Цей алгоритм, який характеризує метод фіксованої частоти, заключається у наступному. При заданому зовнішньому радіусі а, відношення d/a і частоти зміни магнітного поля, вимірюють фазовий кут , а по ньому, використовуючи залежність від х (див. рис. 2) знаходять параметр х, і далі на основі функції K=f(х) при тому ж відношенні d/a визначають параметр K, а потім при знайденому параметрі х, і відомому коефіцієнті заповнення , а також за виміряними значеннями ерс Е23 і Е03 знаходять з урахуванням (1) магнітний параметр виробу r із співвідношення

. (14)

Електропровідність виробу визначають на основі (11) з виразу

. (15)

Формули (14) і (15) дають можливість визначити r і в послідовному циклі, тобто спочатку знайти r, а далі . У паралельному циклі величину r знаходять із виразу (14), а , використовуючи формулу

. (16)

Паралельний цикл прискорює процес розрахунків r і , що важливо при автоматизації контролю. Окрім вказаних універсальних залежностей і K від х, у роботі були введені інші удосконалені функції перетворення, тобто K=f() і Nх=Kх2=f(), де Nх - параметр, який характеризує собою нормовану ерс Е23Н, обумовлену магнітним потоком всередині ТЕМП (де Е23Н230). Ці дві функції дозволяють визначити значення r і за допомогою двох незалежних кривих: K=f() і Nх=f(). Дійсно, після виміру в експерименті фазового кута на основі функції K=f() для заданих d/a і а знаходять параметр K, а по ньому, виходячи із (14), визначають r, а величину розраховують із співвідношення

, (17)

де параметр Nх знаходять при відомих d/a і а за допомогою функції Nх=f() для визначеного у експерименті значення фазового кута .

Як бачимо з (14) і (17), r розраховують на основі використання тільки кривої K=f(), а - тільки, виходячи з функції Nх=f(), причому обидва параметри r і залежать від електричних параметрів перетворювача, що вимірюються, і відомих величин. Формули (14) і (17) характеризують паралельний цикл визначення r та .

В цьому ж розділі описана схема установки ТЕМП для контроля електромагнітних параметрів r і труб з компенсацією частини ерс ТЕМП, обумовленої магнітним потоком в повітряному зазорі між трубою та вимірювальною обмоткою ТЕМП. Схема дозволяє генератором Г встановлювати струм I і частоту f. Струм вимірюють амперметром А до частот 1500 Гц і за допомогою падіння напруги, що показує вольтметр В, на зразковому опорі R0 (при f>1500 Гц). Ерс Е23 з включених на зустріч вимірювальної обмотки робочого РП і вторинної обмотки компенсаційного КП перетворювачів визначається вольтметром В2. Значення ерс Е0 з виходу вторинної обмотки опорного перетворювача регіструється вольтметром В3. Фазовий кут між Е23 і Е0 вимірюється фазометром Ф. На цій схемі (див. рис. 4) були одержані результати експериментального визначення r і матеріалу трубчастих виробів. Результати, отримані розробленим методом з фіксованою фазою і контрольними методами (балістичним при визначенні r і мостовим для вимірювання ) гарно співпадають.

У другому розділі приведені схеми установок, які працюють на основі параметричного електромагнітного перетворювача ПЕМП з циліндричним трубчастим виробом. Розглянуто основні співвідношення, які описують роботу цих установок. Показано достоїнства і недоліки ТЕМП і ПЕМП, які використаються для сумісного контролю r і .

У третьому розділі розглянуто електромагнітний метод і реалізуючий його пристрій для одночасного контролю r і трубчастих виробів на основі застосування фіксованих значень фазового кута . Використовуючи формули (1)-(10) можна визначити залежності r і х від нормованого магнітного потоку Фн у трубі, причому

, (18)

де Ф23 – магнітний потік всередині труби, який створює ерс Е23; Ф0 – магнітний потік ТЕМП при відсутності в ньому виробу; Ф0 індукує ерс Е0.

На рис. 5 і 6 показано функції перетворення r=f(Фн) і х=f(Фн) при фіксації фази =const=15. Алгоритм визначення значень r і при використанні методу фіксованої фази, =const такий. Змінюють частоту магнітного поля, зондуючого трубу до тих пір, коли фазовий кут зрівняється з заданим значенням (наприклад, =15). При цьому треба забезпечити умову 1, котра реалізується шляхом компенсації частини сумарної ерс, пов’язаної з магнітним потоком у повітряному зазорі. Знайшовши в схемі рис. 4 ерс Е23, Е0 при фіксованій частоті, яка відповідає =const, на основі (18) знаходять Фн, а потім за допомогою графіка рис. 5 при заданому відношенні d/a визначають r. Другий графік залежності х від Фн (див. рис. 6) дає можливість знайти для того ж d/a величину х. Останній параметр, та відомий радіус труби а, а також знайдені значення r і f дозволяють визначити з співвідношення (15).

Був проведений експеримент на зразках труб, виконаних із різних матеріалів. Наприклад, зразок: сталь 3; d/a=0,2; a=1,510-3 м, довжина зразка 0,5 м; перетворювач: ТЕМП, аП=2510-3 м, напруженість магнітного поля Н0=60 А/м; =1. Вимірювальні значення величин: f=2348,2 Гц, =15, Е23=0,203 В, Е20=5,8210-3 В (де Е20 – ерс ТЕМП при наявності компенсації ефектів зазору у відсутності зразка всередині ТЕМП)

. (19)

Розрахункові значення r=99,9; х0=4,69968; =0,529107 См/м.

У цьому ж розділі було розроблено метод безконтактного визначення зовнішнього діаметра і питомої електричної провідності немагнітних труб. Був введений комплексний параметр N, формули визначення модуля і його фази вн якого мають вигляд при r=1

, (20)

, (21)

де Евн – внесена виробом у ТЕМП ерс, ReK і ImK – реальна та уявна частини параметра K; вн – фазовий кут внесеної ерс Евн.

На основі формул (1)-(10) і (20) отримані залежності N і вн від параметра х при різних фіксованих d/a (див. рис. 7 і 8). Значення ReK і ImK можна знайти, як

, (22)

, (23)

З графіків рис. 7 і 8 видно, що при х35 функції N=f(х) та вн=f(х) практично не залежать від відношення d/a. Це дає можливість встановити алгоритм вимірювальних і розрахункових процедур для визначення діаметру D і питомої електричної провідності циліндричних немагнітних труб. При цьому змінюючи частоту f доки фазовий кут вн зрівняється із значенням 2,33, яке відповідає х=35. Можна використовувати випадок вн2,33. Далі визначений кут вн дозволяє на основі залежності вн від х (див. рис. 8) знайти х, а по ньому – параметр N, застосувавши функцію N=f(х) (рис. 7). Для виміряних значень ерс Евн і Е0, виходячи з формули (20), визначають зовнішній діаметр D труби з виразу

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5184
Авторов
на СтудИзбе
435
Средний доход
с одного платного файла
Обучение Подробнее