46079 (Виртуальная память в Microsoft Windows)

2016-07-31СтудИзба

Описание файла

Документ из архива "Виртуальная память в Microsoft Windows", который расположен в категории "". Всё это находится в предмете "информатика" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "рефераты, доклады и презентации", в предмете "информатика, программирование" в общих файлах.

Онлайн просмотр документа "46079"

Текст из документа "46079"

Виртуальная память в Microsoft Windows

Здесь мы рассмотрим архитектуру памяти, применяемую в Microsoft Windows.

Виртуальное адресное пространство процесса

Каждому процессу выделяется собственное виртуальное адресное пространство. Для 32-разрядных процессов его размер составляет 4 Гб. Соответственно 32-битный указатель может быть любым числом от 0x00000000 до 0xFFFFFFFF. Всего, таким образом, указатель может принимать 4 294 967 296 значений, что как раз и перекрывает четырехгигабайтовый диапазон. Для 64-разрядных процессов размер адресного пространства равен 16 экзабайтам, поскольку 64-битный указатель может быть любым числом от 0x00000000 00000000 до 0xFFFFFFFF FFFFFFFF и принимать 18 446 744 073 709 551 616 значений, охватывая диапазон в 16 экзабайтов.Поскольку каждому процессу отводится закрытое адресное пространство, то, когда в процессе выполняется какой-нибудь поток, он получает доступ только к той памяти, которая принадлежит его процессу. Память, отведенная другим процессам, скрыта от этого потока и недоступна ему. В Windows 2000 память, принадлежащая собственно операционной системе, тоже скрыта от любого выполняемого потока. Иными словами, ни один поток не может случайно повредить ее данные.В Windows 2000, ни один поток не может получить доступ к памяти чужого процесса. Итак, адресное пространство процесса закрыто. Отсюда вытекает, что процесс А в своем адресном пространстве может хранить какую-то структуру данных по адресу 0x12345678, и одновременно у процесса В по тому же адресу — но уже в его адресном пространстве — может находиться совершенно иная структура данных. Обращаясь к памяти по адресу 0x12345678, потоки, выполняемые в процессе А, получают доступ к структуре данных процесса А, Но, когда по тому же адресу обращаются потоки, выполняемые в процессе В, они получают доступ к структуре данных процесса В. Иначе говоря, потоки процесса А не могут обратиться к структуре данных в адресном пространстве процесса В, и наоборот

Как адресное пространство разбивается на разделы

Виртуальное адресное пространство каждого процесса разбивается на разделы. Их размер и назначение в какой-то мере зависят от конкретного ядра Windows (таблица 13-1)

Раздел

32-разрядная Windows 2000 (на х86 и Alpha)

32-разрядная Windows 2000 (на х86 с ключом /3GB)

64-разрядная Windows 2000 (на Alpha и А-64)

Windows 98

Для выявления

0x00000000

0x00000000

0x00000000 00000000

0x00000000

нулевых указателей

0x0000FFFF

0x0000FFFF

0x00000000 0000FFFF

0x00000FFF

Для совместимости с программами DOS и 16-разрядной Windows

Hет

Нет

Нет

0x00001000 0x003FFFFF

Для кода и данных

0x00010000

0x00010000

0x00000000 00010000

0x00400000

пользовательского режима

0x7FFEFFFF

0xBFFFFFFF

0x000003FF FFFEFFFF

0x7FFFFFFF

Закрытый,

0x7FFF0000

0xBFFF0000

0x000003FF FFFF0000

Нет

размером 64 Кб

0x7FFFFFFF

0xBFFFFFFF

0x000003FF FFFFFFFF

Для общих MMF (файлов, проецируемых в память)

Нет

Нет

Нет

0x80000000 0xBFFFFFFF

Для кода и данных

0x800000000

0xC0000000

0x00000400 00000000

0xC0000000

режима ядра

0xFFFFFFFF

0xFFFFFFFF

0xFFFFFFFF FFFFFFFF

0xFFFFFFFF

Таблица 13-1. Так адресное пространство процесса разбивается на разделы

Раздел для выявления нулевых указателей (Windows 2000 и Windows 98)

Этот раздел адресного пространства резервируется для того, чтобы программисты могли выявлять нулевые указатели. Любая попытка чтения или записи в память по этим адресам вызывает нарушение доступа. Довольно часто в программах, написанных на С/С++, отсутствует скрупулезная обработки ошибок. Например, в следующем фрагменте кода такой обработки вообще нет:

int* pnSomeInteger = (int*) malloc(sizeof(int));

*pnSomeInteger = 5;

При нехватке памяти malloc вернет NULL. Ho код не учитывает эту возможность и при ошибке обратится к памяти по адресу 0x00000000 А поскольку этот раздел адресного пространства заблокирован, возникнет нарушение доступа и данный процесс завершится Эта особенность помогает программистам находить "жучков* в своих приложениях. В Windows 2000 программы для MS-DOS и 16-разрядной Windows выполняются в собственных адресных пространствах; 32-разрядные приложения повлиять на них не могут.

Раздел для кода и данных пользовательского режима (Windows 2000 и Windows 98)

В этом разделе располагается закрытая (неразделяемая) часть адресного пространства процесса. Ни один процесс не может получить доступ к данным другого процесса, размещенным в этом разделе. Основной объем данных, принадлежащих процессу, хранится именно здесь (это касается всех приложений) Поэтому приложения менее зависимы от взаимных "капризов", и вся система функционирует устойчивее. В Windows 2000 сюда загружаются все EXE- и DLL-модули В каждом процессе эти DLL можно загружать по разным адресам в пределах данного раздела, но так делается крайне редко. На этот же раздел отображаются все проецируемые в память файлы, доступные данному процессу. В 64-разрядной Windows 2000 ядро наконец получит то пространство, которое ему нужно на самом деле.

Увеличение раздела для кода и данных пользовательского режима до 3 Гб на процессорах x86 (только Windows 2000)

Microsoft предусмотрела в версиях Windows 2000 Advanced Server и Windows 2000 Data Center для процессоров x86 возможность увеличения этого пространства до 3 Гб. Чтобы все процессы использовали раздел для кода и данных пользовательского режима размером 3 Гб, а раздел для кода и данных режима ядра — объемом 1 Гб, Вы должны добавить ключ /3GB к нужной записи в системном файле Boot.ini. Как выглядит адресное пространство процесса в этом случае, показано в графе "32-разрядная Windows 2000 (на x86 с ключом /3GB)" таблицы 13-1.

Уменьшение раздела для кода и данных пользовательского режима до 2 Гб в 64-разрядной Windows 2000

Многие разработчики захотят как можно быстрее перенести свои 32-разрндные приложения в 64-разрядную среду. Но в исходном коде любых программ полно таких мест, где предполагается, что указатели являются 32-разрядными значениями. Простая перекомпиляция исходного кода приведет к ошибочному усечению указателей и некорректному обращению к памяти. Однако, если бы система как-то гарантировала, что память никогда не будет выделяться по адресам выше 0x00000000 7FFFFFFF, приложение работало бы нормально. И усечение 64-разрядного адреса до 32-разрядного, когда старшие 33 бита равны 0, не создало бы никаких проблем. Так вот, система дает такую гарантию при запуске приложения в "адресной песочнице" (address space sandbox), которая ограничивает полезное адресное пространство процесса до нижних 2 Гб. По умолчанию, когда Вы запускаете 64-разрядное приложение, система резервирует все адресное пространство пользовательского режима, начиная с 0x0000000 80000000, что обеспечивает выделение памяти исключительно в нижних 2 Гб 64-разрядного адресного пространства. Это и есть "адресная песочница". Большинству приложений этого пространства более чем достаточно. А чтобы 64-разрядное приложение могло адресоваться ко всему разделу пользовательского режима (объемом 4 Тб), его следует скомпоновать с ключом /LARGEADDRESSAWARE.

Закрытый раздел размером 64 Кб (только Windows 2000)

Этот раздел заблокирован, и любая попытка обращения к нему приводит к нарушению доступа Microsoft резервирует этот раздел специально, чтобы упростить внутреннюю реализацию операционной системы. Вспомните, когда Бы передаете Windows-функции адрес блока памяти и его размер, то она (функция), прежде чсм приступить к работе, проверяет, действителен ли данный блок. Допустим, Вы написали код:

BYTE bBuf[70000]; DWORD dwNumBytesWritTen; WriteProcessMemory(GetCurrentProcess(), (PVOID) 0x7FFEEE90, bBuf, sizeof(bBuf), &dwNumBytesWntten);

В случае функций типа WriteProcessMemory область памяти, в которую предполагается запись, проверяется кодом, работающим в режиме ядра, — только он имеет право обращаться к памяти, выделяемой под код и данные режима ядра (в 32-разрядных системах — по адресам выше 0x80000000). Если по этому адресу есть память, вызов WriteProcessMemory, показанный выше, благополучно запишет данные в ту область памяти, которая, по идее, доступна только коду, работающему в режиме ядра. Чтобы предотвратить это и в то же время ускорить проверку таких областей памяти, Microsoft предпочла заблокировать данный раздел, и поэтому любая попытка чтения или записи в нем всегда вызывает нарушение доступа.

Раздел для кода и данных режима ядра (Windows 2000 и Windows 98)

В этот раздел помещается код операционной системы, в том числе драйверы устройств и код низкоуровневого управления потоками, памятью, файловой системой, сетевой поддержкой. Все, что находится здесь, доступно любому процессу. В Windows 2000 эти компоненты полностью защищены. Поток, который попытается обратиться по одному из адресов памяти в этом разделе, вызовет нарушение доступа, а это приведет к тому, что система в конечном счете просто закроет его приложение. 64-разрядной Windows 2000 раздел пользовательского режима (4 Тб) выглядит непропорционально малым по сравнению с 16 777 212 Тб, отведенными под раздел для кода и данных режима ядра. Дело не в том, что ядру так уж необходимо все это виртуальное пространство, a просто 64-разрядное адресное пространство настолько огромно, что его большая часть не задействована. Система разрешает нашим программам использовать 4 Тб, а ядру — столько, сколько ему нужно. К счастью, какие-либо внутренние структуры данных для управления незадействованными частями раздела для кода и данных режима ядра не требуются.

Регионы в адресном пространстве

Адресное пространство, выделяемое процессу в момент создания, практически все свободно (незарезервировано). Поэтому, чтобы воспользоваться какой-нибудь его частью, нужно выделить в нем определенные регионы через функцию WirtualAlloc.Операция выделения региона называется резервированием (reserving). При резервировании система обязательно выравнивает начало региона с учетом так называемой гранулярности выделения памяти (allocation granularity). Последняя величина в принципе зависит от типа процессора, но для процессоров, рассматриваемых в книге (x86, 32- и 64-разрядных Alpha и IA-64), — она одинакова и составляет 64 Кб.Резервируя регион в адресном пространстве, система обеспечивает еще и кратность размера региона размеру страницы. Так называется единица объема памяти, используемая системой при управлении памятью. Как и гранулярность выделения ресурсов, размер страницы зависит от типа процессора В частности, для процессоров x86 он равен 4 Кб, а для Alpha (под управлением как 32-разрядной, так и 64-разядной Windows 2000) — 8 Кб. Иногда система сама резервирует некоторые регионы адресного пространства в интересах.Если Вы попытаетесь зарезервировать регион размером 10 Кб, система автоматически округлит заданное Вами значение до большей кратной величины. А зто значит что на x86 будет выделен регион размером 12 Кб, а на Alpha — 16 Кб.Когда зарезервированный регион адресного пространства становится не нужен, ею следует вернуть в общие ресурсы системы.Эта операция — освобождение (releasing) региона — осуществляется вызовом функции VirtualFree

Передача региону физической памяти

Чтобы зарезервированный регион адресного пространства можно было использовать, Вы должны выделить физическую память и спроецировать её на этот регион. Такая операция называется передачей физической памяти (committing physical storage). Чтобы передать физическую память зарезервированному региону, Вы обращаетесь все к той же функции VirtualAlloc.Передавая физическую память регионам, нет нужды отводить ее целому региону. Можно, скажем, зарезервировать регион размером 64 Кб и нередать физическую память только его второй и четвертой страницам. Когда физическая память, переданная зарезервированному региону, больше не нужна, ее освобождают. Эта операция — возврат физической памяти (decommitting physical storage) — выполняется вызовом функции VirtualFree.

Физическую память следует рассматривать как данные, хранимые в дисковом файле со страничной структурой. Поэтому, когда приложение передает физическую память какому-нибудь региону адресного пространства (вызывая VirtualAttoc), она на самом деле выделяется из файла, размещенного на жестком диске. Размер страничного файла в системе — главный фактор, определяющий количество физической памяти, доступное приложениям. Реальный объем оперативной памяти имеет гораздо меньшее значение. Физическая память в страничном файле не хранится Windows 2000 может использовать несколько страничных файлов, и, если они расположены на разных физических дисках, операционная система работает гораздо быстрее, поскольку способна вести запись одновременно на нескольких дисках. Чтобы добавить или удалить страничный файл, откройте в Control Panel апплет System, выберите вкладку Advanced и щелкните кнопку Performance Options. Нa экране появится следующее диалоговое окно.

Однако система действует не так, иначе на загрузку и подготовку программы к запуску уходило бы слишком много времени.При запуске приложения система открывает его исполняемый файл и определяет объем кода и данных. Затем резервирует регион адресного пространства и помечает, что физическая память, связанная с этим регионом, — сам ЕХЕ-файл,то есть вместо выделения какого-то пространства из страничного файла система использует истинное содержимое, или образ (image) ЕХЕ-файла как зарезервированный регион адресного пространства программы. Благодаря этому приложение загружается очень быстро, а размер страничного файла удается заметно уменьшить. Образ исполняемого файла (т. e. EXE- или DLL-файл), размещенный на жестком диске и применяемый как физическая память для того или иного региона адресного пространства, называется проецируемым в память файлом (memory-mapped file). При загрузке EXF, или DLL система автоматически резервирует регион адресного пространства и проецирует на него образ файла. Помимо этого, система позволяет (с помощью набора функций) проецировать на регион адресного пространства еще и файлы данных

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Нашёл ошибку?
Или хочешь предложить что-то улучшить на этой странице? Напиши об этом и получи бонус!
Бонус рассчитывается индивидуально в каждом случае и может быть в виде баллов или бесплатной услуги от студизбы.
Предложить исправление
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5140
Авторов
на СтудИзбе
441
Средний доход
с одного платного файла
Обучение Подробнее