45891 (Эффективное использование STL и шаблонов)

2016-07-31СтудИзба

Описание файла

Документ из архива "Эффективное использование STL и шаблонов", который расположен в категории "". Всё это находится в предмете "информатика" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "рефераты, доклады и презентации", в предмете "информатика, программирование" в общих файлах.

Онлайн просмотр документа "45891"

Текст из документа "45891"

Эффективное использование STL и шаблонов

Сергей Сацкий

Введение

С помощью конечных автоматов (далее просто автомат) можно успешно решать обширный класс задач. Это обстоятельство подмечено давно, поэтому в литературе по проектированию программного обеспечения часто приводятся рассуждения на тему применения автоматов ([2], [5], [8]). Однако в процессе моделирования автомат рассматривается с более высокого уровня, нежели это делается в момент его реализации с использованием конкретного языка программирования.

Последний раз журнал C / C++ User’s Journal обращался к проблеме проектирования конечных автоматов (Finite State Machine) в майском выпуске 2000 года ([1]). В этом номере была напечатана статья Дэвида Лафренье (David Lafreniere), где автор описывал использованный им подход. С тех пор прошло много времени, и в данной статье будет сделана попытка применить другой подход к проектированию конечного автомата с учетом современных тенденций в проектировании программного обеспечения.

Для удобства рассмотрим простой пример, который будет использоваться далее. Допустим, что необходимо определить, является ли входная последовательность символов целым числом, допустимым идентификатором, или недопустимой строкой. Под допустимыми идентификаторами будем понимать такие идентификаторы, которые начинаются с буквы и далее содержат буквы и "/", или цифры. Автомат, который поможет решить задачу, показан на рисунке 1. На рисунке используется нотация UML (Unified Modeling Language).

Рисунок 1. Автомат, позволяющий выяснить, что представляет собой входная строка.

Следует отметить, что различные источники наделяют подобный автомат различными атрибутами. Чемпионом по их количеству, наверное, является UML ([2]). Здесь можно найти отложенные события (deferred events), внутренние переходы (internal transitions), параметризованные триггеры событий (event triggers with parameters), дополнительные условия переходов (guard conditions), входные функции (entry action), выходные функции (exit action), события, генерируемые по таймеру (time events) и т.д. Однако здесь мы для простоты изложения опустим дополнительные атрибуты (к некоторым из них мы вернемся позже) и сосредоточимся на простой модели, где есть состояния, события и переходы между состояниями.

На данный момент все, что мы имеем – это наглядная и удобная для внесения изменений модель. Как теперь перейти от нее к коду на языке С++? Самый простой из способов реализации – это набор операторов if в том или ином виде. Например:

switch ( CurrentState )

{

case State1: if ( CurrentEvent == Event1 )

{

. . .

}

if ( CurrentEvent == Event2 )

{

. . .

}

. . .

case State2: . . .

Не слишком наглядно, не так ли? А теперь представим себе, что мы имеем десятки событий и десятки состояний. Такой код просматривать трудно. Особенно тяжкие проблемы возникают при сопровождении кода, когда к нему надо вернуться через несколько месяцев и внести исправления.

Другая возможная реализация состоит в наборе функций, каждая из которых представляет собой состояние. Такая функция сможет возвратить указатель на ту функцию, которая соответствует новому состоянию автомата. Такая реализация также не облегчает поддержку кода.

Подойдем к проблеме немного с другой стороны. Картинка – это хорошо, но в исходном виде она никаким образом не может быть перенесена в исходный текст. Значит, даже, если решение будет найдено, то это будет нечто промежуточное между картинкой и обычным текстом.

Подход к реализации автомата

Таким промежуточным вариантом представления автомата может быть таблица. Этот способ известен давно, например [5]. Составим таблицу переходов для нашего автомата (таблица 1).

События / состояния

Пусто

число

идентификатор

недопустимая строка

буква

идентификатор

недопустимая строка

идентификатор

недопустимая строка

цифра

Число

число

идентификатор

недопустимая строка

Таблица 1.

Здесь в первой строке перечислены возможные состояния, а в первом столбце – возможные события. На пересечениях указаны состояния, в которые должен осуществиться переход.

Представление автомата в виде таблицы гораздо нагляднее, чем “размазанное” представление того же автомата в виде условных операторов или функций переходов. Таблицу уже можно попытаться переложить на код.

Предположим, что удалось переложить таблицу на код. Каким бы хотелось видеть этот код? Сформулируем требования к нему ([7]):

Описание автомата (читай – таблица) должно быть сконцентрировано в одном месте. Это даст легкость чтения, понимания и модификации автомата.

Представление автомата должно быть типобезопасным.

Не должно быть ограничений на количество состояний и событий.

События и состояния хотелось бы представить в виде абстрактных типов, определяемых пользователем.

По возможности, автомат хотелось бы сделать гибким и легко расширяемым.

По возможности, хотелось бы проверять описание автомата.

По возможности, хотелось бы исключить неправильное использование автомата.

Требования 1 и 7 означают, что все описание автомата хорошо бы поместить в конструктор. В конструкторе же надо проверять правильность описания – требование 6.

class SFiniteStateMachine

{

public:

SFiniteStateMachine( <описание автомата> );

. . .

private:

SFiniteStateMachine();

};

Требование 4 означает, что нужно использовать шаблон, параметрами которого будут типы события и состояния.

template

class SFiniteStateMachine

{

. . .

};

Требование 2 означает, что не должно использоваться никаких небезопасных операций вида reinterpret_cast.

О требовании 5 поговорим позже, а сейчас обсудим требование 3. В общем случае количество возможных состояний (то есть количество столбцов в таблице) неизвестно. Неизвестно также и количество событий (то есть количество строк в таблице). Получается, что у конструктора класса, который будет представлять собой автомат, переменное количество аргументов. С первого взгляда кажется, что эту проблему легко решить с помощью функций языка C va_arg(), va_copy(), va_end() и va_start() ([6]). Однако, не все так просто. Для этих функций обязательно нужно предусмотреть признаки окончания списков, а у нас количество элементов в строках и столбцах неизвестно. Размерность же задавать нежелательно. Кроме того, эти функции работают гарантированно только для POD (Plain Old Data), а для произвольных типов возможны неприятности.

Подойдем с другой стороны. Напишем, каким хотелось бы видеть конструктор автомата:

SFiniteStateMachine A(

,

,

);

При таком вызове конструктора путем форматирования текста, набранного моноширинным шрифтом, описанию автомата удастся придать вид таблицы. Пофантазируем:

SFiniteStateMachine A(

“empty”,

“empty”, “number”, “identifier”, “unknown”,

letter, “identifier”, “unknown”, “identifier”, “unknown”,

digit, “number”, “number”, “identifier”, “unknown”

);

Со стартовым состоянием все просто: это всего лишь объект класса, представляющего состояние. Со списком состояний и тем более со списком переходов дело сложнее. Перечислить состояния через запятую не удастся. Более того, для SFiniteStateMachine было бы удобно иметь фиксированное количество аргументов. Оказывается, это возможно. Ведь мы можем создать временные объекты, каждый из которых будет заниматься своим списком.

SFiniteStateMachine(

const SState & StartState,

SStatesListProxy( <список состояний> ),

STransitionsProxy( ),

STransitionsProxy( ),

. . .

);

Рассмотрим список состояний. Здесь остается та же проблема – неопределенное количество состояний. Помочь в ее решении может перегрузка операторов и конструктор по умолчанию. Перечислить аргументы через запятую все равно не удалось бы, но вместо запятой подошел бы и другой разделитель. Таким разделителем может быть <<, то есть обработку списка состояний можно записать так:

SStatesListProxy() << “empty” << “number” << “identifier” << “unknown”

Перегруженный operator<< для SStatesListProxy проверит, что среди состояний нет повторяющихся, а кроме того обеспечит типобезопасность для состояний. Переменное количество состояний при такой записи тоже не проблема. Конструктор для SFiniteStateMachine теперь можно записать так:

SFiniteStateMachine( const SState & StartState,

(SStatesListProxy() << “empty” << “number” << “identifier” << “unknown”),

STransitionsProxy( )

STransitionsProxy( ),

. . .

);

Аналогичным образом поступим со списком переходов для одного события. Отличие будет лишь в том, что каждый список переходов имеет еще один атрибут – событие, для которого описываются переходы. Конструктор STransitionsProxy будет принимать один аргумент: событие, а перегруженный operator<< будет принимать состояния.

STransitionsProxy( letter ) << “identifier” << “unknown” << “identifier” << “unknown”

Вернемся к конструктору автомата. У него тоже есть список переменной длины – строки таблицы описания переходов или STransitionsProxy. Решим эту задачу уже известным способом: создание временного объекта и перегрузка operator<< для SStatesListProxy и STransitionsProxy.

SStatesMachineProxy() << SStatesListProxy << STransitionsProxy

Перегруженный operator<< проверит, что сначала идет список состояний, что список состояний только один, что в списках переходов нет повторяющихся событий и в переходах указаны только состояния, указанные в списке состояний. operator<< также проверит, что количество состояний в списках переходов равно количеству состояний в списке состояний. В результате конструктор SFiniteStateMachine будет выглядеть так:

SFiniteStateMachine( const StateType & StartState,

const SFiniteStateMachineProxy & ProxyMachine );

Теперь очередь за реализацией описанных выше идей. Запишем конструктор автомата для рассматриваемого примера полностью.

SFiniteStateMachine FirstMachine(

“empty”,

(SFiniteStateMachineProxy() <<

(SStatesListProxy() << “empty” << “number” << “identifier” << “unknown”) <<

(STransitionsProxy(letter) << “identifier” << “unknown” << “identifier” << “unknown”) <<

(STransitionsProxy(digit) << “number” << “number” << “identifier” << “unknown”)

)

);

На конструктор SFiniteStateMachine будет возложена задача проверки начального состояния. Оно должно быть в списке состояний.

Путем форматирования текста уже удалось придать аргументам конструктора вид таблицы. Однако это еще не все. При описании автомата были опущены все детали, связанные с шаблонами. На практике это означает, что при конструировании также придется указывать типы, что дополнительно “замусорит” текст. Несмотря на проблемы, связанные с препроцессором, он здесь поможет. Запись аргументов конструктора станет примерно такой:

FSMBEGIN( “empty” )

FSMSTATES “empty” << “number” << “identifier” << “unknown”

FSMEVENT(letter) “identifier” << “unknown” << “identifier” << “unknown”

FSMEVENT(digit) “number” << “number” << “identifier” << “unknown”

FSMEND

Такая запись уже приемлема для повседневного использования.

Детали реализации

Реализация должна включать ряд вспомогательных элементов, в частности, исключения. Автомат будет выдавать их в случае ошибки в описании состояний и переходов. При разработке своего класса исключений можно воспользоваться наследованием от класса стандартного исключения. Это даст возможность указать в блоке catch только ссылку на базовый стандартный класс исключений. Свой класс исключений можно определить так:

class SStateMachineException : public std::exception

{

private:

const std::string Message;

public:

SStateMachineException( const std::string & Msg ) : Message( Msg ) {}

SStateMachineException( const char * Msg ) : Message( Msg ) {}

virtual ~SStateMachineException() throw() {}

virtual const char * what( void ) const throw() { return Message.c_str(); }

private:

SStateMachineException();

};

В основной программе, использующей класс автомата, можно будет написать так:

. . .

try

{

. . .

создание и использование автомата

. . .

}

catch ( std::exception & Exception )

{

// Поймаем и стандартное исключение и исключение, сгенерированное автоматом

}

Вернемся к конструкторам. Поскольку они имеют дело со списками переменной длины, то для сохранения элементов логично воспользоваться контейнерами, предоставляемыми библиотекой STL ([3]). Для хранения одномерного списка воспользуемся контейнером vector, а для таблицы переходов – вектором векторов:

std::vector< std::vector > Transitions;

Алгоритмы STL помогут находить событие в списке событий:

std::vector::const_iterator k( std::find( Events.begin(),

Events.end(), EntryEvent ) );

Поскольку контейнер vector поддерживает operator [], то для поиска состояния, в которое необходимо совершить переход, в таблице переходов можно воспользоваться подобной конструкцией:

NewState = Transitions[ EventIndex ] [ StateIndex ];

где соответствующие индексы могут быть вычислены с помощью алгоритма STL distance:

inline int GetStateIndex( const StateType & State ) const

{

return std::distance( States.begin(), std::find( States.begin(), States.end(), State ) );

}

Разумеется, класс автомата должен будет иметь функцию, принимающую и обрабатывающую событие. Существует два варианта. Первый – это функция, второй – перегрузка какого-либо оператора. Для придания дополнительной гибкости реализуем оба варианта:

SFiniteStateMachine & AcceptEvent( const EventType & Event )

{

. . .

}

и

inline SFiniteStateMachine & operator << ( const EventType & Event )

{ return AcceptEvent( Event ); }

Перегрузка operator << даст возможность использовать автомат в таком стиле:

// Принять события Event1, Event2 и Event3

MyMachine << Event1 << Event2 << Event3;

Остается вопрос: что делать, если придет событие, для которого у автомата нет описания переходов? Возможны варианты: просто проигнорировать такое событие, сгенерировать исключение или сделать что-то, определяемое пользователем. Воспользуемся идеей стратегий ([4]) и включим в число аргументов шаблона функтор, который будет определять нужную стратегию поведения. Такой подход вполне соответствует требованию 5. При этом можно задать стратегию по умолчанию – например, генерировать исключение. Теперь заголовок шаблона выглядит так:

template

class SFiniteStateMachine { . . . };

В числе заготовленных стратегий есть и стратегия игнорирования неизвестного события:

template

class SIgnoreStrategy

{

public:

inline void operator() ( const SEvent & ) const { return; }

};

Если понадобятся другие действия, всегда можно написать собственный функтор по образу и подобию SIgnoreStrategy и передать его шаблону.

Многие источники, описывающие конечные автоматы, упоминают о возможности вызова функций при входе и выходе из состояния. Такую возможность легко предоставить, используя тот же подход стратегий. Функции входа и выхода из состояний удобно определять для класса, представляющего конкретное состояние. Вспоминая о требовании 5, дадим возможность гибкого управления такой возможностью. Предполагая, что функции класса состояния будут называться OnEnter и OnExit, можно написать несколько готовых функторов: не вызывающий ни одну из функций, вызывающий только OnEnter, вызывающий только OnExit и вызывающий обе функции.

template

class SEmptyFunctor

{

public:

inline void operator() ( SState & From, const SEvent & Event, SState & To ) { return; }

};

template

class SOnEnterFunctor

{

public:

inline void operator() ( SState & From, const SEvent & Event, SState & To )

{ To.OnEnter( From, Event ); }

};

template

class SOnExitFunctor

{

public:

inline void operator() ( SState & From, const SEvent & Event, SState & To )

{ From.OnExit( Event, To ); }

};

template

class SOnMoveFunctor

{

public:

inline void operator() ( SState & From, const SEvent & Event, SState & To )

{ From.OnExit( Event, To ); To.OnEnter( From, Event ); }

};

Стратегию по умолчанию (не вызывать никакую функцию) можно передать в качестве аргумента шаблона. Стратегия вызова функций, скорее всего, будет меняться чаще, чем стратегия действий при неизвестном событии. Поэтому ее имеет смысл поместить в списке аргументов перед стратегией реакции на неизвестное событие:

template

class SFunctor = SEmptyFunctor,

class SUnknownEventStrategy = SThrowStrategy >

class SFiniteStateMachine { . . . };

Еще один вопрос, связанный с событиями, состоит в том, что событие может быть сгенерировано внутри функции, вызываемой при выходе или входе в состояние. Для обработки таких событий надо соответствующим образом спроектировать функцию, принимающую событие. С учетом таких “внутренних” событий, надо предусмотреть очередь, в которую будут помещаться события. Код, который обрабатывает переходы, должен будет делать это до тех пор, пока очередь не опустеет. В качестве контейнера, подходящего для хранения событий, воспользуемся deque из STL. Поскольку нам нужны только вставка элементов в начало и исключение из конца контейнера, без произвольного доступа, контейнер deque подойдет лучше всего.

Осталось совсем немного. Иногда нужно привести автомат в исходное состояние. Как и в случае с событиями предусмотрим два варианта: обычная функция и перегруженный operator <<. Для перегруженного operator << нужно определить специальный манипулятор:

enum SMachineManipulator

{

ResetMachine = 0

};

. . .

inline SFiniteStateMachine & operator << ( SMachineManipulator Manipulator )

{

if ( Manipulator == ResetMachine )

return Reset();

return *this;

}

Теперь можно будет написать так:

// Принять событие Event1 и сбросить автомат в начальное состояние

MyMachine << Event1 << RestMachine;

Результатом работы автомата является состояние, в которое он перешел. Для получения текущего состояния напишем функцию и перегрузим оператор вывода в поток класса автомата:

inline StateType GetCurrentState( void ) const { return CurrentState; }

template

class SEvent,

class SFunctor,

class SUnknownEventStrategy >

ostream &

operator<< (ostream & Stream,

const SFiniteStateMachine<_SState, _SEvent,

_SFunctor,_SUnknownEventStrategy> & Machine )

{

return Stream << Machine.GetCurrentState();

}

Теперь, если для класса состояния определен оператор вывода в поток, можно написать такой фрагмент кода:

MyMachine << Event1 << RestMachine;

cout << MyMachine; // Эквивалентно cout << MyMachine.GetCurrentState();

Как уже говорилось, для сокращения времени набора кода и удобочитаемости определены несколько макросов. Они требуют предварительного определения подстановки для типов событий и состояний. Требование связано с тем, что использование вложенных директив препроцессора невозможно. Шаблон же использует Proxy классы, которым также нужны сведения о типах. Поэтому для использования макросов придется сделать так:

#define FSMStateType string // Тип состояния

#define FSMEventType int // Тип события

. . .

#undef FSMStateType

#undef FSMEventType

Альтернатива есть: полностью указывать все типы.

Осталось поместить шаблон в пространство имен. После этого им можно пользоваться.

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Нашёл ошибку?
Или хочешь предложить что-то улучшить на этой странице? Напиши об этом и получи бонус!
Бонус рассчитывается индивидуально в каждом случае и может быть в виде баллов или бесплатной услуги от студизбы.
Предложить исправление
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5138
Авторов
на СтудИзбе
443
Средний доход
с одного платного файла
Обучение Подробнее