diplom (Система криптозащиты в стандарте DES. Система взаимодействия периферийных устройств), страница 4

2016-07-31СтудИзба

Описание файла

Документ из архива "Система криптозащиты в стандарте DES. Система взаимодействия периферийных устройств", который расположен в категории "". Всё это находится в предмете "информатика" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "рефераты, доклады и презентации", в предмете "информатика, программирование" в общих файлах.

Онлайн просмотр документа "diplom"

Текст 4 страницы из документа "diplom"

Повторное применение шифра Виженера называют составным шифром Виженера:

Lx = Mx +Kx1 + Kx2 +… + KxN (mod 31)

В конце прошлого века появились механические машины, в которых для преобразования текста, использовались несколько кодовых колес, цилиндров или других элементов, перемещающихся друг относительно друга в процессе обработки текста. Это так называемые- ручные машины.

Упрощенную работу таких машин можно представить следующим образом. По периметру каждого колеса записаны все знаки используемого алфавита, причем на каждом колесе последовательность знаков разная. Все колеса размещены на одной оси и при повороте предыдущего колеса на один знак, (или на один оборот) последующие смещаются на один или несколько знаков, относительно друг друга. Колеса помещены в кожух имеющий два окна. Через одно окно виден один знак первого колеса, через другое один знак последнего колеса. Поворотом первого колеса в первом окне устанавливается знак текста подлежащий засекречиванию, в последнем окне считывается знак зашифрованного текста. Вращая в том же направлении первый диск устанавливают в окне следующий знак текста и т.д.

Для надежной защиты телеграфных сообщений, после первой мировой войны появились электрические и электромеханические машины. Вначале это были громоздкие релейные системы и машины имеющие колеса с профилированными ребордами. Работа некоторых из них аналогична механическим дисковым шифромашинам. Однако вместо нанесенных знаков алфавита диски имеют с одной стороны входные электрические контакты (их число равно числу знаков используемого алфавита), а с другой стороны диска столько же выходных контактов. Входные и выходные контакты соединены между собой в хаотичном, но заранее заданном порядке. Контакты смежных дисков обеспечивают надежное электрическое соединение. Ввод текста осуществляется с клавиатуры, аналогичной клавиатуре пишущей машинки или телетайпа.

В 30-х годах в Швеции появилась весьма компактная и простая в работе шифромашина ''Хагелин''. Шифромашины этой фирмы и их модификации изготовлены в огромном количестве и были на вооружении военных, правительственных и дипломатических органов многих стран мира. Так только для ВС США в период второй мировой войны было заказано около 140 тысяч экземпляров. После войны штаб-квартира фирмы переместилась в Швейцарию, где эта фирма успешно функционирует до сих пор в городе Цуг под названием Crypto AG.

Перед второй мировой войной появились электронные машины. Первые из них были реализованы на электронных лампах и были, по существу, электронными аналогами самых совершенных механических разработок фирмы ''Хагелин''.

После войны были построены транзисторные шифромашины, затем появились машины построенные на основе микроэлектронных интегральных схем. Микроминиатюризация позволила реализовать в относительно компактных шифромашинах этого поколения исключительно сложные алгоритмы, требующие для своей реализации десятки тысяч электронных элементов, объединенных в сотни регистров и схем. Применение малогабаритной цифровой памяти с большими сроками хранения и объемами хранимой информации позволило снабжать машину впрок большим количеством качественных ключей.

Устройства для обеспечения конфиденциальности речевых сообщений появились значительно позже, чем для текстовых. Однако уже в 1875 году, спустя всего лишь 5 лет после изобретения телефона, в США была подана заявка на изобретение, относящееся к закрытию телефонной связи.

В настоящее время для зашифрования телефонных переговоров применяют два принципиально различных метода: преобразование аналоговых параметров речи и цифровое зашифрование. Оба метода предусматривают использование шифрообразующих устройств, аналогичных тем, которые используются в шифромашинах для обработки текстовых сообщений.

Наиболее фундаментальные работы по защите информации криптографическими методами появились после Второй мировой войны. Наиболее известны работы Шеннона, в том числе опубликованный в 1949 г. доклад ''Теория связи в секретных системах''. В основе этих работ лежат следующие предположения:

  • Криптограф пытается найти методы обеспечения секретности и (или) аутентичности (подлинности) сообщений.

  • Криптоаналитик пытается выполнить обратную задачу: раскрыть шифротекст или подделать его так, чтобы он был принят как подлинный.

  • При этом допускается, что криптоаналитик противника имеет полный шифртекст и ему известен алгоритм шифрования, за исключением секретного ключа.

  • При разработке методов наиболее надежной защиты информации, криптограф допускает также, что криптоаналитик противника может иметь несколько отрывков открытого текста и соответствующего ему шифртекста. На основе этого криптоаналитик может навязать фиктивный текст.

  • Возможно также, что криптоаналитик противника, может попытаться навязать ранее полученный шифртекст вместо фактически передаваемого.

Модель криптографической системы, предложенной Шенноном, показана на рис.3.1.

Незащищенный канал для передачи шифртекста

X'


X

Источник

сообщения

Шифратор

Дешифратор

Пиемник

сообщения



Y'

Y

X


Криптоаналитик

противника


Z



Источник

ключа


Защищенный канал для передачи ключа


Рис.3.1. Модель криптографической системы


Источник сообщений порождает открытый текст

X={x1,x2,… xm}.

Источник ключей генерирует k знаков ключа- символов некоторого конечного алфавита. Шифратор преобразует открытый текст X в шифртекст:

Y={y1,y2, … ym}.

Последнее преобразование записывается в виде:

Y=Ez(X)

Дешифратор, получив шифртекст, выполняет обратное преобразование:

X=Dz(Y)

Важной частью модели криптографической системы является ''защищенный'' канал по которому передается секретный ключ:

Z={z1,z2,… zk}.

Таким каналом может быть канал электросвязи с шифрованием другими устройствами, нежели показанные на рис 3.1. однако чаще ключи развозятся специальными сотрудниками. В этом случае ключ представляет собой таблицу цифр, перфоленту, магнитную карточку или другой тип носителя с записанной информацией.

Следует особо отметить, что X, Y и Z- независимые случайные величины. Статистические свойства величины Х определяются источником сообщения, Y задается разработчиком криптографической системы, а Z создается и тиражируется специальным устройством заготовки ключей (источником ключа).

К.Шеннон рассматривал вопрос о стойкости криптографических систем с теоретической и практической точек зрения.

Первый вопрос он сформулировал так:

''Насколько надежна некоторая система, если криптоаналитик противника не ограничен во времени и обладает всеми необходимыми средствами для анализа криптограмм?''

Второй вопрос (о практической стойкости) в постановке Шеннона, можно сформулировать следующим образом:

''Надежна ли некоторая система, если криптоаналитик противника располагает ограниченным временем и вычислительными возможностями для анализа криптограмм?''

Решение вопроса о теоретической стойкости привело к следующему выводу: объем секретного ключа для построения теоретически стойкого шифра недопустимо велик для большинства практических применений.

Шеннон доказал, что при двух допущениях совершенно секретные системы существуют. Эти допущения следующие:

  • секретный ключ используется только один раз и

  • криптоаналитику доступен лишь шифртекст.

На основе этих допущений совершенная секретность означает, что открытый текст Х и шифртекст Y статистически независимы, т.е.

Р(Х=х|Y=y)=P(X=x)

для всех возможных открытых текстов Х и шифртекстов Y. Другими словами криптоаналитик не может улучшить апостериорное распределение вероятностей открытого текста, используя знание шифртекста независимо от того, каким временем и вычислительными ресурсами он располагает для анализа. Было доказано также, что ключ не должен быть короче открытого текста т.е. К>Х.

Таким образом, возникает проблема секретного ключа. Она заключается в том, что на один знак открытого текста требуется, по крайней мере один знак секретного ключа. При обработке огромных массивов информации, например в крупных вычислительных системах, обеспечить это достаточно сложно или такое решение неприемлемо по экономическим причинам. Поэтому в ряде случаев используют несовершенные шифры, не обеспечивающие совершенную секретность.

Появление на рынке устройств защиты конфиденциальной информации с оригинальными (''фирменными'') алгоритмами преобразований сигналов создает непреодолимые трудности при необходимости обмена информацией между абонентами, имеющими устройства различных фирм. Кроме того, некоторые ''фирменные'' алгоритмы не обеспечивают необходимой степени защиты, главным образом те, которые разработаны недостаточно квалифицированными специалистами.

С целью устранения этих недостатков в США был принят стандарт засекречивания данных DES (Data Encryption Standard), который утвержден Национальным бюро стандартов США и выпущен в качестве официального документа 15 января 1977г. (FIPS PUB 46.). (Первые публикации стандартного алгоритма DES были в 1974 г.) Стандарт DES предназначен для использования в Федеральных управлениях при применении несекретных компьютеров. В этом стандарте впервые был предложен алгоритм засекречивания общего пользования, пригодный для производителей и потребителей устройств защиты информации в сетях передачи данных. До этого на коммерческом ранке существовало множество не стандартизированных алгоритмов.

2. Стандарт шифрования DES. Алгоритм и основные свойства.

Стандарты по защите данных от несанкционированного доступа требовались в таких областях, как шифрование, установление подлинности личности и данных (аутентификация), контроль доступа, надежное хранение и передача данных. В результате сотрудничества трех организаций США- Национального бюро стандартов (NBC), Управления национальной безопасности (NSA) и фирмы IBM подобный стандарт, получивший название DES (Data Encryption Standard) был разработан и опубликован в 1975 г. в специальном издании Federal Register. Его публикация вызвала полемику среди специалистов в области защиты информации. После двухлетних испытаний с целью поиска в алгоритме DES ''тайной лазейки'', а также по экономическим вопросам (в частности, по установлению длины ключа) было принято решение оставить стандарт без изменений. В алгоритме не было обнаружено ни каких ''лазеек''. Эффективная длина ключа в 56 бит вполне удовлетворяла потенциальных пользователей на ближайшие 15… 20 лет, так как общее количество ключей в этом случае оценивалось цифрой 7,6*10^16. DES стал одним из первых ''открытых'' шифроалгоритмов. Все схемы, используемые для его реализации, были опубликованы и тщательно проверены. Секретным был только ключ, с помощью которого осуществляется кодирование и декодирование информации.

Алгоритм DES базируется на научной работе Шеннона 1949 г., связавшей криптографию с теорией информации. Шеннон выделил два общих принципа, используемых в практических шифрах: рассеивание и перемешивание. Рассеиванием он назвал распространение влияния одного знака открытого текста на множество знаков шифртекста, что позволяет скрыть статистические свойства открытого текста. Под перемешиванием Шеннон понимал использование взаимосвязи статистических свойств открытого и шифрованного текста. Однако шифр должен не только затруднять раскрытие, но и обеспечивать легкость шифрования и дешифрования при известном секретном ключе. Поэтому была принята идея использовать произведение простых шифров, каждый из которых вносит небольшой вклад в значительное суммарное рассеивание и перемешивание.

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5173
Авторов
на СтудИзбе
436
Средний доход
с одного платного файла
Обучение Подробнее