~1 (Разработка операционных систем), страница 5

2016-07-31СтудИзба

Описание файла

Документ из архива "Разработка операционных систем", который расположен в категории "". Всё это находится в предмете "информатика" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "рефераты, доклады и презентации", в предмете "информатика, программирование" в общих файлах.

Онлайн просмотр документа "~1"

Текст 5 страницы из документа "~1"

Например, при n=9 базовые адреса страничных рамок — это следующий ряд: 512, 1024, 1536. Следовательно, размер страничной рамки равен 512 байт.

В современных операционных системах типичный размер страницы составляет 2 Кб или 4 Кб.

Каждая операционная система поддерживает свой собственный метод работы с таблице страниц. Обычно за каждым процессом, находящимся в основной памяти, закреплена отдельная таблица страниц. В этом случае указатель на таблицу страниц хранится в PCB соответствующего процесса.

3.3.2. Аппаратная поддержка страничной организации памяти.

Преобразование логического адреса в физические осуществляется для каждого адреса, генерируемого процессором, поэтому часто для ускорения этого процесса применяются аппаратные методы. На рисунке приведена схема, иллюстрирующая метод, использующий ассоциативные регистры (associative registers).

Каждый ассоциативный регистр кроме операций чтения - записи может обрабатывать операцию сравнения кода, поступающего на его вход с частью кода, хранимого в регистре. Матрица ассоциативных регистров хранит часть таблицы страниц. Номер страницы П подается одновременно на входы всех ассоциативных регистров, которые параллельно выполняют операцию сравнения. На выходе матрицы ассоциативных регистров образуется начальный адрес страничной рамки f того регистра, в котором про-

изошло совпадение кода.

Основная память

f

CPU

П

Д

Логический адрес

Таблица страниц

f

Д

Страничная рамка

П

f

матрица ассоциативных регистров

Д

f


В том случае, если требуемый номер страницы находится в таблице страниц, то есть ни в одном из ассоциативных регистров не произошло совпадение, происходит обращение к таблице страниц, находится искомый

номер страничной рамки, а найденная строка таблицы страниц переписывается в один из ассоциативных регистров.

Защита страничной памяти основана на контроле уровня доступа к каждой странице, возможны следующие уровни доступа:

  1. только чтение

  2. и чтение и запись

  3. только выполнение

В этом случае каждая страница снабжается трехбитным кодом уровня доступа. При трансформации логического адреса в физический сравнивается значение кода разрешенного уровня доступа с фактически требуемым. При их несовпадении работа программы прерывается.

3.4. Сегментная организация памяти.

Страничная организация памяти предполагает, что разделение программы на страницы осуществляет операционная система и это невидимо для прикладного программиста. Большинство технологий программирования также предполагает разделение программы на множество логических частей — подпрограммы, процедуры, модули и так далее.

Сегментная организация памяти представляет собой метод несмежного размещения, при котором программа разбивается на части (сегменты) на этапе программирования. Отдельный сегмент хранит отдельную логическую часть программы: программный модуль или структуру данных (массив), стек, таблица и так далее.

3.4.1. Базовый метод сегментной организации памяти.

Обычно сегменты формируются компилятором, а на этапе загрузки им присваиваются идентифицирующие номера. Таким образом, логический адрес при сегментной организации памяти состоит из двух частей: S и d, где S — номер сегмента, а d — смещение в пределах сегмента.

Трансформация логического адреса в физический осуществляется с помощью таблицы сегментов (segment table).

да

CPU

S

d

сегмент

d

base

таблица сегментов

base

limit

+

нет


Количество строк таблицы сегментов равно количеству сегментов программы: S, limit, base. Limit — размер сегмента, base — начальный адрес сегмента в памяти.

Номер сегмента S используется в качестве индекса для таблицы сегментов. С помощью таблицы сегментов определяется его начальный адрес base в основной памяти. Значение limit используется для защиты памяти. Смещение d должно удовлетворять неравенству 0n).Таблица сегментов (или её часть) располагается в ассоциативной памяти.

Защита сегментной памяти основана на контроле уровня доступа к каждому сегменту. Например, сегменты, содержащие только код, могут быть помещены как доступные только для чтения или выполнения, а сегменты, содержащие данные, помечают как доступные для чтения и записи.

3.4.2. Разделение сегмента между НЕСКОЛЬКИМИ процессами.

Поскольку сегмент является логически завершенным программным модулем, он может использоваться различными процессами. Сегмент называется разделяемым, когда его начальный адрес и размер указаны в двух и более таблицах сегментов. Например, два процесса могут использовать подпрограмму Sqrt, которая хранится в виде одной физической копии.

На рисунке приведен пример, иллюстрирующий использование разделяемого текстового редактора.

таблица сегментов процесса 1

основная память

limit

base

25286

43062

43062

4425

68348

68348

редактор

данные

72773

1


таблица сегментов процесса 2

90003

limit

base

данные

25286

43062

98553

2

8550

90003

3.4.3. Фрагментация.

Программа во входной очереди загружается в память посегментно в любые свободные разделы основной памяти. При этом, как правило, используются стратегии best fit и first fit. Сегментной организации памяти присущи как внутренняя, так и внешняя фрагментации. Внутренняя фрагментация образуется вследствие того, что размер загружаемого сегмента меньше размера имеющегося свободного раздела, а внешняя вследствие того, что отсутствует участок памяти подходящего размера. Внешняя фрагментация означает, что часть процесса остается незагруженной, и его выполнение в какой–то момент времени должно быть приостановлено.

Очень часто сегментация комбинируется со страничированием. Это позволяет сочетать преимущества обоих методов. Низкая фрагментация при страничной организации и естественное расчленение программы по сегментам.

Сегментация и страничирование используется об операционных системах OS/2 для управления компьютерами.

4. Управление виртуальной памятью.

Все методы управления памятью имеют одну и ту же цель — хранить в памяти мультипрограммную смесь, необходимую для мультипрограммирования. Рассмотренные ранее методы предполагали, что вся программа перед выполнением должна быть размещена в основной памяти. Виртуальная память — это технология, которая позволяет выполнять процесс, который может только частично располагаться в основной памяти. Таким образом, виртуальная память позволяет выполнять программы, размеры которых превышают размеры физического адресного пространства.

4.1. Страничирование по запросу (demand paging).

Виртуальная память чаще всего реализуется на базе страничной организации памяти, совмещенной со своппингом страниц.

Своппингу подвергаются только те страницы, которые необходимы процессору. Таким образом, страничирование по запросу означает

  1. программа может выполняться CPU, когда часть страниц находится в основной памяти, а часть — во внешней.

  2. в процессе выполнения новая страница не перемещается в основную память до тех пор, пока в ней не возникла необходимость.

логическая

таблица

физическая

вторичная

память

страниц

память

память

4

v

0

i

1

6

v

2

i

3

i

4

A

8

v

5

i

6

C

i

7

8

F

15

Для учёта распределения страниц между внешней и основной памятью каждая строка таблицы страниц дополняется битом местонахождения страницы. Valid/invalid bit.

В том случае, если процессор пытается использовать страницу, помеченную значением invalid, возникает событие, называемое страничная недостаточность (paging fault).

Страничная недостаточность вызывает прерывание выполнения программы и передачу управления операционной системе. Реакция операционной системы на страничную недостаточность заключается в том, что необходимая страница загружается в основную память.

CPU

load M

1

таблица

страниц

i

2

ОС

страница

3

4

5

6


На рисунке показаны основные этапы обработки события «страничная недостаточность».

  1. свободная рамка

    процессор, прежде чем осуществлять преобразование логического адреса в физический, проверяет значение бита местонахождения необходимой страницы*.

  2. если значение бита invalid, то процесс прерывается и управление передается операционной системе для обработки события страничная недостаточность.

  3. разыскивается необходимая страница во вторичной памяти и свободная страничная рамка в основной**.

  4. требуемая страница загружается в выбранную страничную рамку.

  5. после завершения операции загрузки редактируется соответствующая строка таблицы страниц, в которую вносится базовый адрес и valid значение бита местонахождения.

  6. управление передается прерванному процессу

4.2. Замещение страниц.

В процессе обработки страничной недостаточности операционная система может обнаружить, что все страничные рамки основной памяти заняты, и, следовательно, невозможно загрузить требуемую страницу. В этом случае возможны следующие режимы: приостановка прерванного процесса, уменьшение на единицу количества процессов мультипрограммной смеси для освобождения всех ею занимаемых страничных рамок, использование метода замещения страниц.

Метод замещения страниц означает, что в основной памяти выбирается наименее важная/используемая страница, называется страница — жертва (victim page), которая временно перемещается в swap space, а на её место загружается страница, вызываемая страничной недостаточностью.

Обработка страничной недостаточности с учетом замещения осуществляется по следующему алгоритму:

  1. определяется местонахождение страницы путем анализа бита местонахождения

  2. если значение бита invalid, то разыскивается свободная страничная рамка.

    1. если имеется свободная страничная рамка, то она используется.

    2. если свободной страничной рамки нет, то используется алгоритм замещения, который выбирает страницу — жертву.

    3. страница — жертва перемещается в swap space и редактируется таблица страниц.

  3. требуемая страница загружается на место страницы — жертвы и соответствующим образом редактируется таблица страниц.

Управление передается прерванному процессу. Приведенный алгоритм замещения требует двухстраничных перемещений.

  1. страница - жертва перемещается в swap space.

  2. требуемая страница перемещается в освободившуюся страничную рамку.

Страницу - жертву можно не копировать в swap space в том случае, если за время, прошедшее от последнего перемещения её содержимое не модифицировалось. В этом случае время замещения уменьшается примерно вдвое.

Для учета факта модификации страницы в таблицу страниц вводится дополнительный бит, который меняет своё значение на противоположное в том случае, если содержимое страницы изменилось.

Для практического использования метода страничирования по запросу необходимо разработать два алгоритма.

  1. алгоритм распределения страничных рамок (from allocation algorithm).

  2. алгоритм замещения страниц (page replacement algorithm).

Алгоритм распределения страничных рамок решает, сколько страничных рамок в основной памяти выделить каждому из процессов мультипрограммной смеси.

Алгоритм замещения страниц решает, какую из страниц выбрать в качестве жертвы.

4.2.1. FIFO.

Наиболее простым алгоритмом замещения страниц является алгоритм FIFO. Этот алгоритм ассоциирует с каждой страницей время, когда эта страница была помещена в память. Для замещения выбирается наиболее старая страница.

поток ссылок на страницы


7

0

1

2

0

3

0

4

2

3

0

3

2

1

7

7

7

2

2

2

2

4

4

4

0

0

0

0

0

0

0

0

3

3

3

2

2

2

2

2

1

1

1

1

1

0

0

0

3

3

3

3

3

страничные рамки. 11 замещений, 14 ссылок


Учет времени необязателен, когда все страницы в памяти связаны в FIFO-очередь, а каждая помещаемая в память страница добавляется в хвост очереди.

Алгоритм учитывает только время нахождения страницы в памяти, но не учитывает используемость страницы. Например, первые страницы программы могут содержать переменные, используемые на протяжении работы всей программы. Это приводит к немедленному возвращению к только что замещенной странице.

4.2.2. Оптимальный алгоритм.

Этот алгоритм имеет наилучшее соотношение количества замещенных страниц к количеству ссылок. Алгоритм строится по следующему принципу: замещается та страница, на которую нет ссылки на протяжении наиболее длительного периода времени. Для реализации этого алгоритма необходимо каждый раз сканировать весь поток ссылок, поэтому он нереализуем на практике и используется для оценки реально работающих алгоритмов.

4.2.3. LRU — алгоритм (least recently used).

Алгоритм выбирает для замещения ту страницу, на которую не было ссылки на протяжении наиболее длинного периода времени. Least recently used ассоциирует с каждой страницей время последнего использования этой страницы. Для замещения выбирается та страница, которая дольше всех не использовалась. Этот алгоритм наиболее часто используется в системах страничирования по запросу. Обычно применяется два подхода при внедрении этого алгоритма.

  1. подход на основе логических часов (счетчика)

  2. подход на основе стека номеров страниц

  1. ассоциируют с каждой строкой таблицы поле “время использования” а в CPU добавляются логические часы. Логические часы увеличивают своё значение при каждом обращении к памяти. Каждый раз, когда осуществляется ссылка на страницу, значение регистра логических часов копируется в поле “время использования”. Заменяется страница с наименьшим значением в отмеченном поле путем сканирования всей таблицы страниц. Сканирование отсутствует при использовании подхода на основе стека.

  2. стек номеров страниц хранит номера страниц, упорядоченных в соответствии с историей их использования, на вершине стека располагается только что использованная страница, а на дне least recently used страница. Как только осуществляется ссылка на страницу, она перемещается на вершину стека, а номера всех страниц сдвигаются вниз.

5. ОБЩИЕ СВЕДЕНИЯ

Теперь, после ознакомления с теорией операционных систем, рассмотрим вкратце каждую из выше перечисленных*. Все эти операционные системы работают в многозадачном однопользовательском режиме работы (UNIX также поддерживает и многопользовательский режим); поддерживают иерархическую файловую систему, межпроцессное взаимодействие, встроенные средства отладки программ, стандартизируют программный интерфейс для многих внешних устройств, обычно трактуя их как файлы с последовательным доступом.

5.1. УПРАВЛЕНИЕ ПАМЯТЬЮ.

Все рассматриваемые операционные системы обеспечивают выделение участка памяти для нужд программы, изменение его размера и освобождение. По-разному поддерживается концепция виртуальной памяти.

Операционная система OS/2 использует страничную модель памяти, то есть программа получает память порциями по 4 кб; подкачка также осуществляется порциями по 4 кб. Программа не может управлять процессом подкачки.

Важной особенностью OS/2 является возможность создания специальных разделяемых областей памяти, которые могут использоваться для межпроцессного взаимодействия (см. гл. межпроцессное взаимодействие).

Microsoft Windows использует сегментированную модель память. Исторически сложилось так, что ОС (а, точнее, программная оболочка) Microsoft Windows до разработки процессора 80386 работала в реальном режиме (’real mode’) и защищенном режиме 80286-го процессора (’standart mode’). В реальном режиме механизм подкачки не использовался; при наличии 286-го процессора ОС позволяла выгружать на диск только MS-DOS-освские программы. С появлением процессора 80386 и использованием его защищенного режима, возможности использования виртуальной памяти резко расширились: появилась возможность выгрузить на диск любой сегмент памяти компьютера. С помощью системных вызовов, программа пользователя может управлять многими нюансами распределения памяти: разрешением на выгрузку страницы, сборкой мусора, перемещением объектов в памяти.

5.2. ФАЙЛОВАЯ СИСТЕМА.

Все системы поддерживают следующие элементы иерархических файловых систем: обычные файлы, каталоги, специальные байт-ориентированные и блок-ориентированные файлы. Файл является массивом байтов (блоков фиксированной длины). Каталоги обеспечивают связь между именами файлов и собственно файлами. Каждый элемент каталога содержит имя файла и ссылку на конкретный файл. Для именования файлов используются корневой и текущий каталоги. Имя файла состоит из последовательности компонентов - локальных имен, разделенных символами '\' (В операционной системе UNIX - '/').

ОС UNIX характеризуется единственной однородной файловой системой на один или несколько компьютеров. В Microsoft Windows и OS/2 файловые системы ассоциируются с носителями (посредством логических имен - букв латинского алфавита).

Операционная система OS/2, кроме того, поддерживает свою файловую систему - HPFS (High Performance File System - высокопроизводительная файловая система), характеризующаяся хранением имен файлов и каталогов в виде B-дерева.

Внешние устройства (такие как терминал, принтер) так же часто представляются как файлы для упрощения работы с ними.

Операционные системы предоставляют следующие системные вызовы: запрос на смену и получение имени текущего каталога; создание, открытие, закрытие, удаление, переименование и получение информации о файле или каталоге, позиционирование в них.

Все рассматриваемые операционные системы поддерживают операции блокировки файла для защиты доступа к нему со стороны других процессов в многозадачной среде.

5.3. УПРАВЛЕНИЕ ПРОЦЕССАМИ.

Единицей управления и потребления ресурсов в многозадачной системе является процесс. В частности, ввод-вывод выполняется синхронно, и процесс приостанавливается до его завершения. Если требуется продолжить выполнение процесса параллельно с инициированным им вводом-выводом, нужно предварительно породить другой процесс для реализации ввода-вывода. Microsoft Windows, OS/2 и UNIX предоставляют сходные системные вызовы для обслуживания и управления процессами ('сессия' в OS/2): порождение, уничтожение.

OS/2 предоставляет гораздо более широкий спектр системных вызовов для управления процессами. В OS/2 существуют три вида процессов: нити (цепи или треды), 'настоящие' процессы и экранные группы. Экранные группы - наиболее независимый тип процессов. Каждая экранная группа имеет свою собственную виртуальную консоль, адресное пространство, открытые файлы, очереди и каналы (см. ниже). Внутри экранной группы могут находится один или более 'настоящих' процессов, у каждого из которых могут быть свои открытые файлы и свое адресное пространство. Нити - самый простой класс процессов, они имеют только свое собственное адресное пространство, а все остальные ресурсы наследуют от породившего их 'настоящего' процесса.

В операционной системе OS/2 планировщик задач может выделять 'настоящим' процессам кванты времени по двум алгоритмам: динамического и абсолютного приоритетов. Алгоритм динамического приоритета выражается: система подсчитывает интенсивность операций ввода-вывода, использования процессорного времени, и по ним определяет количество квантов времени, предоставляемых процессу. При использовании абсолютных приоритетов ОС распределяет кванты времени согласно числовым значениям, заданным при старте процесса. Процесс может изменять свой приоритет в небольших пределах с помощью системной функции.

В Microsoft Windows планировщика задач распределяет кванты процессорного времени аналогично алгоритму абсолютных приоритетов в операционной системе OS/2. Программа никак не может повлиять на количество предоставляемого ей процессорного времени.

В операционной системе UNIX алгоритм работы планировщика задач зависит от реализации.

5.4. МЕЖПРОЦЕССНОЕ ВЗАИМОДЕЙСТВИЕ.

Операционные системы используют разные термины для определения способов межпроцессного взаимодействия.

Единственным видом межпроцессного взаимодействия в ОС UNIX является сигнальный механизм. Посредством сигналов передается информация о необходимости завершения процесса, об ошибке в программе пользователя, об исключительных ситуациях или завершении порожденного процесса. Сигнал генерируется, когда происходит событие, вызывающее данный сигнал. Одно и то же событие может вызвать посылку сигнала нескольким процессорам. На каждый сигнал, определенный в системе, процесс должен иметь реакцию - действие, которое он выполняет при получении сигнала.

Операционная система OS/2 предоставляет три типа межпроцессного взаимодействия: каналы, очереди и семафоры.

Канал представляет собой кольцевой буфер с двумя указателями - начала и конца; используется для перенаправления ввода-вывода и стандартных файлов между процессами. Только два процесса могут читать или писать в канал - сервер и клиент.

Очередь - это упорядоченный список из 32-битных значений, интерпретируемых процессом по контексту (это может быть целое, указатель на общую область памяти или просто флаг). Любой процесс может прочесть информацию из канала в любом порядке или записать туда любую информацию.

Семафор - это объект, имеющий два устойчивых состояния (рабочее и нерабочее) и используемый для синхронизации исполнения процессов. Существует несколько видов семафоров: семафор событий, взаимного исключения, взаимного ожидания и именованный.

Когда семафор событий находится в нерабочем состоянии, операционная система блокирует исполнение всех процессов, которые запрашивают состояние семафора.

Семафоры взаимного исключения предотвращают возникновение тупиков при обращении к разделяемым ресурсам. Операционная система блокирует доступ к разделяемому ресурсу до тех пор, пока соответствующий семафор не будет свободен. При использовании разделяемого ресурса система устанавливает значение семафора в рабочее состояние, показывая тем самым, что ресурс занят.

Семафор взаимного ожидания представляет собой пакет из семафоров взаимного исключения или семафоров событий. Система может приостановить процесс до тех пор, пока один или все семафоры внутри именованного семафора не окажутся в состоянии 'свободен'(в зависимости от потребности процесса).

Реакция на именованный семафор зависит от процессов, совместно использующих его.

В операционных системах OS/2 и Microsoft Windows существует специальный механизм для взаимодействия процессов в реальном масштабе времени. Этот механизм называется DDE (Dynamic Data Exchange - динамический обмен данными). Он стандартизирует процесс обмена командами, сообщениями и объектами для обработки между задачами. Наиболее распространенные действия, для которых используются DDE - печать.

Другим интерфейсом для обмена данными является OLE (Object Linking and Embedding - объектное связывание со встраиванием). Этот интерфейс позволяет хранить объекты, созданные одной программой, в объектах, созданных другой программой, а также редактировать (печатать) их без нарушения целостности информации и связей.

Одним из наиболее простых, удобных и интуитивных интерфейсов межпрограммного взаимодействия является буфер обмена - Clipboard. Буфер обмена может содержать в себе один информационный объект - кусок текста, картинку и т.д. С помощью системного вызова процесс может получить копию информации, содержащейся в буфере обмена или сам поместить объект в буфер, при этом старое содержимое буфера теряется. Таким образом программы получают простой, но эффективный способ обмена информацией в процессе своей работы.

Операционная система UNIX не предоставляет этого способа обмена информацией, Microsoft Windows же позволяет задачам обмениваться информацией таким образом, даже в DOS-сессиях.

5.5. ГРАФИЧЕСКИЙ ИНТЕРФЕЙС ПОЛЬЗОВАТЕЛЯ.

Графический интерфейс пользователя изначально был несвойственен неигровым программам, однако будучи призванным облегчить общение пользователя с компьютером и программой, хорошо прижился на IBM PC и стал неотъемлемой частью любой уважающей себя операционной системы.

Оболочка Microsoft Windows не была изначально операционной системой, да и сейчас не может считаться в полноценной операционной системой, так как она существует ’поверх’ операционной системы типа MS-DOS. Она возникла в виде стандартизатора графического интерфейса и прижилась исключительно потому, что пользователь хотел видеть программу, с которой ему часто приходится работать красивой, практичной, удобной и легкой в освоении и использовании.

Для ОС UNIX также был создан специальный графический интерфейс - X-Windows; промышленный гигант - фирма IBM выпустила вместе с операционной системой OS/2 свой вариант графического интерфейса пользователя (GUI - Graphics User Interface) - Presentation Manager.

Функции, используемые программой пользователя при работе с графическим пользовательским интерфейсом схожи, как и сами интерфейсы.

После запуска программа обычно создает одно окно, с которым она ассоциируется и работает. Пользователь, работая с окном и находящимися в нем объектами, заставляет операционную систему (или программную оболочку) посылать программе сообщения, активизирующие необходимые пользователю возможности программы. В процессе работы программа также может создавать другие окна (выбора, диалога, обрабатываемого файла и др.) и получать от них сообщения, таким образом стандартизируется часто используемые элементы диалога с пользователем.

Операционная система (оболочка), ориентированная на графический интерфейс пользователя, предоставляет не только функции, поддерживающие ввод-вывод, но и широкий спектр системных вызовов, позволяющих использовать различные графические примитивы: от самых простых (точки, линии, дуги) до самых сложных (области, окна, курсоры). Основным преимуществом использования графического интерфейса операционной системы является то, что с помощью него программа может создавать графические изображения, которые будут выглядеть одинаково на всех устройствах, поддерживаемых операционной системой (принцип What We See Is What We Get - что видим, то и получаем).

Большое внимание в графическом интерфейсе операционной системы обычно уделяется шрифтам. Исторически сложилось так, что первыми и долгое время единственными шрифтами для компьютеров оставались растровые (точечно-матричные) шрифты. Такие шрифты занимали малый объем памяти, однако, их невозможно было вращать, наклонять, уменьшать, без искажений, а увеличивать можно было только в целое число раз. С появлением графического интерфейса, операционные системы стали предоставлять системные вызовы для поддержки использования векторных шрифтов, которые не только легко масштабируются, меняют наклон и толщину, но и выглядят одинаково на всех устройствах, поддерживаемых операционной системой. Каждая операционная система поддерживает свой стандарт векторных шрифтов (TrueType для Microsoft Windows; Adobe Type Manager для OS/2; GhostScript для LINUX).

5.6. ОБЪЕКТНО-ОРИЕНТИРОВАННОЕ ПРОГРАММИРОВАНИЕ И ОПЕРАЦИОННЫЕ СИСТЕМЫ.

Использование объектно-ориентированного подхода к разработке программ не могло не оказать своего влияния на операционную систему. Графический интерфейс пользователя и программный интерфейс операционной системы начали также использовать объектно-ориентированный подход.

Наиболее развитый объектно-ориентированный программный интерфейс имеет операционная система OS/2. Все графические и программные примитивы представляются в ней в виде объектов (память, дисплей, принтер, папка, звуковая карта, дисковод - все это - объекты).Однако, объектно-ориентированный подход неэффективно использует ресурсы памяти, поэтому использование операционной системы OS/2 на компьютерах с 4 мб памяти (на одном из таких писался данный реферат) затруднительно.

ЗАКЛЮЧЕНИЕ.

Современная операционная система - сложный комплекс программных средств, предоставляющих пользователю не только стандартизированный ввод-вывод и управление программами, но и упрощающий работу с компьютером. Программный интерфейс операционных систем позволяет уменьшить размер конкретной программы, упростить ее работу со всеми компонентами вычислительной системы.

Любая фирма, планирующая разработать удобную, мощную и популярную операционную систему должна исходить из всех необходимых факторов. Перечислю лишь некоторые из них:

  • ОС, отвечающая требованиям современной аппаратуры.

  • ОС, совместимая с другими операционными системами.

  • Многозадачная (мультизадачная) ОС.

  • Неплохо защищённая ОС.

  • Удобная и надёжная ОС.

Операционная система, кроме того, должна управлять электропитанием процессора, а также периферийных устройств, подключенных к системе. Функционирование ОС должно быть прозрачным для пользователя, а также легко позволять пользователю подключать или отключать периферию и приложения так, чтобы это не приводило к сбою системы.

Производители не торопятся разработать легкую в работе операционную среду, позволяющую устранять неполадки без какой-либо серьезной подготовки. А потребителям вовсе не хочется изучать толстые тома документаций, отыскивая приемы устранения той или иной проблемы.

Одно из возможных решений данной задачи состоит в том, что при разработке новых ОС станут использоваться системы, предназначенные для компьютерных игр. Они позволяют работать быстро и эффективно, а, кроме того, разобраться в их принципе довольно просто.

СПИСОК ЛИТЕРАТУРЫ:

  1. Еженедельник «ComputerWeek Moscow», № 10-11, 1998 г.

  2. Журнал «PC Magazine”, № 8, 1998 г.

  3. Кузнецов Ю.В. «Теория операционных систем», С-Пб., 1999 г.

  4. Р.Петерсен "Linux. Руководство по операционной системе", BHV, 1997 г.

  5. Рон Кук «Время новой настольной ОС», Изд. /Питер Паблишинг/ С-Пб., 1997 г.

  6. Журнал «Network Client Business Group», январь 1997

Интернет: http://www.fbr.ru/

http://t37.nevod.perm.su/

http://www.students.ru/

http://www.aha.ru/~agb/

http://www.linux.org.ru/

http://www.dic.mimem.odu.ru/

* Замечание 1: метод страничирования по запросу позволяет начать выполнение процесса даже в том случае, когда ни одна страница этого процесса не загружена в основную память.

** Замечание 2: вторичная память, используемая при страничировании по запросу — это высокоскоростное дисковое устройство, часто называемое swap — оборудованием (device), а часть используемого дискового пространства — swap — пространство (swap space).

* Стр.3 этой дипломной работы.

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5137
Авторов
на СтудИзбе
440
Средний доход
с одного платного файла
Обучение Подробнее