diplom (Оптоволоконные линии связи), страница 2

2016-07-31СтудИзба

Описание файла

Документ из архива "Оптоволоконные линии связи", который расположен в категории "". Всё это находится в предмете "информатика" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "рефераты, доклады и презентации", в предмете "информатика, программирование" в общих файлах.

Онлайн просмотр документа "diplom"

Текст 2 страницы из документа "diplom"


,где  - длина волны передаваемого излучения, n1 и n2 – показатели преломления материалов ОВ.

Различают оптические волокна со ступенчатым профилем, у которых показатель преломления сердцевины n1 одинаков по всему поперечному сечению, и градиентные - с плавным профилем, у которых n1 уменьшается от центра к периферии (рис.1.6).

Фазовая и групповая скорости каждой моды в ОВ зависят от частоты, то есть оптоволокно является дисперсной системой. Вызванная этим волноводная дисперсия является одной из причин искажения передаваемого сигнала. Различие групповых скоростей различных мод в многомодовом режиме называется модовой дисперсией. Она является весьма существенной причиной искажения сигнала, поскольку он переносится по частям многими модами. В одномодовом режиме отсутствует модовая дисперсия, и сигнал искажается значительно меньше, чем в многомодовом, однако в многомодовое ОВ можно ввести большую мощность.


Оптические волокна имеют очень малое (по сравнению с другими средами) затухание сигнала в волокне. Лучшие образцы российского волокна имеют затухание 0.22 дБ/км на длине волны 1.55 мкм, что позволяет строить линии связи длиной до 100 км без регенерации сигналов. Для сравнения, лучшее волокно Sumitomo на длине волны 1.55 мкм имеет затухание 0.154 дБ/км. В оптических лабораториях США разрабатываются еще более "прозрачные", так называемые фтороцирконатные волокна с теоретическим пределом порядка 0,02 дБ/км на длине волны 2.5 мкм. Лабораторные исследования показали, что на основе таких волокон могут быть созданы линии связи с регенерационными участками через 4600 км при скорости передачи порядка 1 Гбит/с.

На сегодняшний день для городской телефонной сети отечественной промышленностью выпускаются кабели марки ОК имеющие четыре и восемь волокон. Конструкция ОК-8 приведена на рис.1. 7. Оптические волокна 1 (многомодовые, ступенчатые) свободно располагаются в полимерных трубках 2. Скрутка оптических волокон – повивная, концентрическая. В центре – силовой элемент 3 из высокопрочных полимерных нитей в пластмассовой трубке 4. Снаружи – полиэтиленовая лента 5 и оболочка 6. Кабель ОК-4 имеет принципиально те же конструкцию и размеры, но четыре ОВ в нем заменены пластмассовыми стержнями.

Недостатки волоконно-оптической технологии:

А.Необходимы также оптические коннекторы (соединители) с малыми оптическими потерями и большим ресурсом на подключение-отключение. Точность изготовления таких элементов линии связи должна соответствовать длине волны излучения, то есть погрешности должны быть порядка доли микрона. Поэтому производство таких компонентов оптических линий связи очень дорогостоящее.

Б.Другой недостаток заключается в том, что для монтажа оптических волокон требуется прецизионное, а потому дорогое, технологическое оборудование.

В.Как следствие, при аварии (обрыве) оптического кабеля затраты на восстановление выше, чем при работе с медными кабелями

Тем не менее, преимущества от применения волоконно-оптических линий связи (ВОЛС) настолько значительны, что, несмотря на перечисленные недостатки оптического волокна, эти линии связи все шире используются для передачи информации.


2.Одноволоконные оптические системы передачи.

Широкое применение на городской телефонной сети волоконно-оптических систем передачи для организации межузловых соединительных линий позволяет в принципе решить проблему увеличения пропускной способности сетей. В ближайшие годы потребность в увеличении числа каналов будет продолжать быстро расти. Наиболее доступным способом увеличения пропускной способности ВОСП в два раза является передача по одному оптическому волокну двух сигналов в противоположных направлениях. Анализ опубликованных материалов и завершенных исследований и разработок одноволоконных оптических (ОВОСП) систем передачи позволяет определить принципы построения таких систем.

Наиболее распространенные и хорошо изученные ОВОСП, работающие на одной оптической несущей, кроме оптического передатчика и приемника содержат пассивные оптические разветвители. Замена оптических разветвителей н оптические циркуляторы позволяет уменьшить потери в линии 6 дБ, а длину линии – соответственно увеличить. При использовании разных оптических несущих и устройств спектрального разделения каналов можно в несколько раз повысить пропускную способность и соответственно снизить стоимость в расчете на один канало - километр.

Увеличить развязку между противонаправленными оптическими сигналами, снизить требования к оптическим разветвителям, а следовательно, уровень помех и увеличить длину линии можно путем специального кодирования, при котором передача сигналов одного направления осуществляется в паузах передачи другого направления. Кодирование сводится к уменьшению длительности оптических импульсов и образованию длительных пауз, необходимых для развязки сигналов различных направлений. В ВОСП, построенных подобным образом, могут быть использованы эрбиевые волоконно-оптические усилители.

Развязку между оптическими сигналами можно увеличить, не прибегая к обужению импульсов, если для передачи в одном направлении когерентное оптическое излучение и соответствующие методы модуляции, а в другом – модуляцию сигнала по интенсивности. При этом существенно уменьшается влияние как оптических разветвителей, так и обратного рассеяния оптического волокна.

Если позволяет энергетический потенциал аппаратуры, на относительно коротких линиях может быть использован только один оптический источник излучения на одном конце линии. На другом конце вместо модулируемого оптического источника применяется модулятор отраженного излучения. Такой метод дуплексной связи по одному ОВ обеспечивает высокую

надежность оборудования и применение волоконно-оптических систем передачи в экстремальных условиях эксплуатации.

При нынешнем высоком уровне развития волоконно-оптической техники появилась возможность передавать оптически сигналы на различных модах ОВ с достаточной для ВОСП развязкой, при этом дуплексная связь по одному ОВ организовывается на двух разных модах, распространяющихся в разных направлениях, с использованием модовых фильтров и формирователей мод излучения.

Каждая одноволоконная ВОСП рассмотренных типов имеет достоинства и недостатки. В таблице 1.1 показаны достоинства (знаком «+») систем, их возможности в отношении достижения наилучших параметров.

2.1.Волноводные оптические системы спектрального мультиплексирования/демультиплексирования

С появлением волоконных световодов (ВС) и интегральной оптики (ИО), ос­нованной на волноводном распростране­нии света в тонких пленках, проблема освоения и использования огромного опти­ческого диапазона в интересах связи при­обрела практическое значение. Этому также способствовали успехи в развитии волоконно-оптических линий связи (ВОЛС), планарных оптических волново­дов, интегральных полупроводниковых лазеров и других приборов ИО. Толчком к существенному продвижению в решении данной проблемы стало пред­ложение и разработка волноводных спект­ральных мультиплексоров/ демультиплексоров (ВСМ/Д), позволяющих уплотнять/разуплотнять каналы связи во всем опти­ческом диапазоне и сравнительно просто выполнять канализацию отдельных "уз­ких" оптических каналов. При этом широкое использование оптических си­стем волноводного спектрального

Таблица 1.1 - Сравнительная характеристика принципов построения одноволконных ВОСП

Тип ВОСП

Минимальное затухание, максимальная длина РУ

Защище-нность сигналов

Большой объем передаваемой информации

Относите-льно низкая стоимость

Высокая надежность и стойкость к внешним воздействиям

С оптическими разветвителями

+

С оптическими циркуляторами

+

Со спектральным разделением

+

+

С разделением по времени с использованием оптических переключателей

+

С разделением по времени с использованием оптических усилителей

+

+

С когерентным излучением в одном направлении и модуляцией интенсивности в другом

+

+

С одним источником излучения

+

+

С модовым разделением

+

С когерентным излучением для обоих направлений с разными видами модуляции

+

+

+


мультиплексирования/демультиплексирования позволяет не только решать задачи око­нечных устройств волоконной связи на дальние расстояния (материк - материк, город - город), но и перейти к решению задач внутригородской связи, вплоть до связи типа дом - дом. Кроме того, достоинством ВСМ/Д является возмож­ность их реализации с помощью извест­ных, хорошо разработанных технологиче­ских методов микроэлектроники и инте­гральной оптики, дающих возможность на одном кристалле объединить оптические и электронные схемы, а также обеспечить соединение с ВС. При этом научная и технологическая база для коммерческого использования ВСМ/Д в основном под­готовлена.

2.1.1.Принципиальные схемы и основные характеристики ВСМ/Д.

В основе ВСМ/Д лежит известный объемный ана­лизатор спектра типа эшелона Майкельсона, представляющий собой фазовую решетку со сравнительно небольшим числом интерферирующих лучей и боль­шой постоянной разностью фаз между соседними лучами. Его волноводное воплощение получило ряд названий (ВСМ/Д, волноводный спектральный анализатор (ВСА), спектральный муль­типлексор на основе матрицы сфазированных волноводов (фазар) и др.). По сути, все названия относятся к одному и тому же устройству.

рис.2.1

Основные характеристики ВСМ/Д и ВСА в связи с принципом обратимости хода лучей, практически одинаковы, а вывод формул можно провести по ана­логии с выводом для объемного эшелона Майкельсона, с учетом тою, что лучи света распространяются по планарным (канальным) волноводам или волокон­ным световодам. На рис.2.1 приведены схемы диспергирующих систем ВСА прозрачного типа (а), ВСМ/Д на основе канальных волноводов (б) и ВСА на основе волоконных световодов (в). Фор­мулы, определяющие основные характе­ристики ВСМ/Д и ВСА, выполненных из одномодовых волноводов, имеют вид (рис. 2.1.а):

Dh/x0b, Nh/b hb

x0, Nhb, Nx0

b=dd

, К=h, 

где D-угловая дисперсия;  - разре­шающая способность; - спектральная область дисперсии; - угловой интер­вал между соседними порядками спект­ра; и - минимальный интервал и минимальный угол между двумя разре­шенными по Рэлею линиями; b - диспер­сионный множитель; h - постоянная разность длины пути между соседними ступенями (волноводами); x0 - ширина ступеней (каналов); и - эффективные показатели преломления ступенчатой структуры и несущего волновода;  - длина волны в вакууме; N - число интерферирующих лучей (каналов); К -порядок спектра. Для волноводных мультиплексоров на основе канальных волноводов и волоконных световодов (рис. 2.1.б и 2.1.в) разность в приведенных формулах должна быть заменена на значение эффективного показателя пре­ломления соответствующих волноводов. При этом для ВСА отражательного типа необходимо учесть удвоение оптического пути в диспергирующей структуре, т. е. должна быть заменена на 2. Во всех перечисленных случаях дисперсионный множитель оказывается более сложным, чем для объемного эшелона Майкельсо­на, ввиду волноводного распространения излучения. Для ВСА (рис.2.1.а) он может быть представлен в виде:

b=jnjnj 

где nj - показатели преломления сред, образующих волноводы. Второй и тре­тий члены, входящие в (1.3), определяются волноводной дисперсией и материальной дисперсией сред, образующих волно­воды, с учетом доли мощности излуче­ния, распространяющейся в каждой среде, в соответствии с соотношением nj = (nj/)(Pj/P), где Pj -мощность излучения, распространяю­щаяся в j-й среде, a P- общая мощно­сть излучения в волноводе, которая, в свою очередь, определяется его параметрами. Анализ зависимости дисперсионного множителя от и  показал, что определяющие его члены могут иметь как отрицательные, так и положительные значения, а величина этого множителя может в несколько раз превышать значение .

Схемы, приведенные на рис. 1. могут быть выполнены и гибридном или волноводном варианте. В первом случае ввод оптических сигналов (n) в несущий волновод и далее в дисперги­рующую систему осуществляется с по­мощью линзы и призмы связи или непосредственно от ВС с помощью волноводной линзы. На выходе дисперги­рующей системы в фокальной плоскости выходной линзы наблюдается спектр принимаемых сигналов. На основе тео­ретических исследований были изготовлены соответствую­щие макеты с заданными расчетными параметрами и получены согласующиеся результаты. В частности, на во­локонном спектроанализаторе (рис.2.1.в) с разрешением 106 было продемонстриро­вано разрешение продольных мод He-Ne лазера, отстоящих друг от друга на 0,08А.

Перспективным направлением в раз­витии ВСМ является объединение дис­персионного и фокусирующего элемен­тов. Впервые такое объеди­нение было предложено и осуществлено путем создания квадратичного фа­зового распределения на выходе диспер­гирующей системы, получаемого в ре­зультате небольшого изменения длин оптических каналов диспергирующей системы. Фокусировка наблюдалась в планарном волноводе в фокальной плос­кости фокусирующей системы. Сейчас описанная схема с незначительными изменениями используется в большинстве работ, по­священных ВСМ/Д. В подобной схеме вход и выход диспергирующей системы связаны с помощью двух звездных сое­динителей и волноведущих пластин, вы­полняющих роль фокусирующих элемен­тов (рис. 2.2). Оптические сигналы на фиксированных

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5173
Авторов
на СтудИзбе
436
Средний доход
с одного платного файла
Обучение Подробнее