Для студентов МТИ по предмету Нейронные сетиНейронные сети (Темы 1-11)Нейронные сети (Темы 1-11)
5,00513752
2026-01-31СтудИзба

Нейронные сети (Темы 1-11) МТИ Ответы на тест

Ответы к экзамену Итоговый тест: Нейронные сети (Темы 1-11)
Новинка
-28%

Описание

Представлены ответы на все вопросы по предмету "Нейронные сети.ои(sa)".
Итоговый набранный балл 100 из 100 (Скриншот прилагаю).
ВНИМАНИЕ! Перед тем как купить работу, обязательно убедитесь, что ваши вопросы совпадают с представленными ниже. Для этого рекомендую сначала запустить тест и сверить хотя бы несколько вопросов.

УЧЕБНЫЕ МАТЕРИАЛЫ
  1. Введение в нейронные сети
  2. Полносвязные нейронные сети
  3. Элементы теории оптимизации
  4. Обучение нейронных сетей
  5. Сверточные нейронные сети
  6. Рекуррентные нейронные сети. 1 Часть
  7. Рекуррентные нейронные сети. 2 Часть
  8. Tips and Tricks
  9. Pytorch
  10. Векторные представления слов
  11. Нейронные сети-трансформеры

СПИСОК ВОПРОСОВ:

Алгоритм Backpropagation:
  • Состоит в случайном подборе весов модели до тех пор, пока не будет достигнут оптимальный набор параметров, минимизирующий ошибку
  • Используется только для оптимизации полносвязных нейросетей
  • Последовательном вычислении градиентов по весам модели, начиная с последнего слоя, по предактивациям соответствующего слоя и градиентам по весам следующего

Архитектура полносвязной нейронные сети основана на идее
  • обобщения низкоуровневых признаков и генерирования на их основе более высокоуровневых
  • Построения разделяющей гиперплоскости
  • Минимизации лосс-функции без использования градиентных методов

Все описанные в лекции алгоритмы обладают общим свойством. Каким?
  • Для всех требуется вычисление матрицы Гессе оптимизируемой функции
  • Для всех требуется вычисление градиентов оптимизированной функции
  • Для всех требуется подсчет значения оптимизируемой функции в данной точке

Градиентные методы оптимизации
  • Представляют собой итерационные алгоритмы
  • Аналитически ищут решение задачи оптимизации
  • Вопреки названию, не используют градиенты

Задача классификации – это задача
  • Обучения с учителем
  • Обучения без учителя
  • Обучения с подкреплением

Задачу машинного обучения можно представить в виде последовательности выполнения действий по выбору оптимальной решающей функции f из многопараметрического семейства F. Задача обучения сводится к задаче оптимизации на этапе:
  • Выбора семейства F
  • Оценки качества выбранной функции f из семейства F
  • Поиска наилучшей функции из семейства F

Идея Momentum состоит в:
  • Вычислении градиента в точке, к которой алгоритм должен сойтись на текущем шаге, согласно посчитанному моментному члену, а не в той точке, откуда алгоритм производит шаг
  • Использовании идеи физической инерции посредством добавления моментных членов, "скоростей"
  • приближенном, а значит - более быстром("моментальном") вычислении градиентов в текущей точке

Лучший способ борьбы с переобучением:
  • Изменение архитектуры модели
  • Регуляризации
  • Увеличение количества данных

Метод подбора адаптированного learning rate на основе оценки исторических градиентов:
  • Nesterov Momentum
  • RMSProp
  • Adagrad

Наиболее популярный на текущий момент метод оптимизации, основанный на идее использования двух моментных членов, предложенный в 2015 году:
  • ADAM
  • Adagrad
  • Adadelta

Начальная инициализация весов нейросети:
  • Должна быть константной для того, чтобы результаты обучения нейросети на одной и той же трейнинговой выборке были воспроизводимыми
  • Должна быть случайной для того, чтобы модель могла обучиться, не зануляя градиенты на определенном шаге, причем такой, что дисперсия сигнала не будет изменяться при проходе через слои нейросети.
  • Может быть любой

Нейронные сети бывают следующих видов:
  • Полносвязные и рекуррентные
  • Рекуррентные, сверточные и трансформеры
  • Рекуррентные, сверточные, полносвязные и трансформеры

Нейронные сети, наиболее часто применяющиеся в CV – это
  • Полносвязные
  • Сверточные
  • Рекуррентные

Обучение нейронной сети – это применение алгоритма оптимизации для решения задачи
  • Минимизации средней нормы градиента эмпирического риска по весам модели
  • Минимизации эмпирического риска
  • Минимизации средней нормы матриц весов модели

Обучение с учителем характеризуется
  • Целью обучить агента принимать оптимальные решения в среде
  • Отсутствием размеченной выборки
  • Наличием размеченной выборки

Отметьте верные высказывания о функциях активации:
  • Функция активации сигмоида лежит в диапазоне [0,1] и может быть интерпретирована как вероятность, а потому часто используется для решения задач бинарной классификации. Функция ReLU - кусочно-линейная
  • Функция Leacky ReLU - всюду дифференцируема. Популярная функция активации гиперболический тангенс может быть использована, как решающая функция для задачи регрессии. Производная сигмоидальной функции не выражается аналитически через значение самой функции в данной точке
  • Все функции активации взаимозаменяемы вследствие того, что имеют одну и ту же область значений и область определения

Переобучение – это эффект, возникающий при
  • Излишней сложности модели по отношению к сложности обучающей выборки, из-за чего происходит “заучивание” данных
  • Слишком долгом обучении модели, из-за чего она теряет свою предсказательную способность вследствие увеличения энтропии весов
  • Усталости специалиста по машинному обучению от того, что его модели слишком долго учатся

При прямом проходе через Feed Forward Neural Network:
  • Происходит обновление весов модели на основе градиентов, посчитанных на предыдущей итерации
  • Происходит выстраивание архитектуры модели посредством подбора числа слоев и их размеров
  • Сигнал передается посредством последовательного матричного умножения и применения нелинейных функций активации

Производная сигмоиды выражается через саму сигмоиду аналитически, как
  • sigm’ = sigm(1 - sigm)
  • sigm’ = 5sigm^(5)
  • sigm’ = 100sigm/sin(sigm)

Условия Каруша-Куна-Таккера применимы для решения:
  • Любой задачи оптимизации
  • Задачи выпуклой оптимизации
  • Задачи оптимизации произвольной функции на выпуклом множестве Q

Функции активации в нейронных сетях:
  • Нелинейны (глобально) и вносят неоднородность в сигнал при прямом проходе
  • Линейны и нужны для проверки работоспособности модели
  • Активируют нейросеть в разных режимах работы

Файлы условия, демо

Характеристики ответов (шпаргалок) к экзамену

Учебное заведение
Семестр
Номер задания
Программы
Теги
Просмотров
1
Качество
Идеальное компьютерное
Размер
145,14 Kb

Список файлов

Нейронные сети. Ответы на тест.pdf
Картинка-подпись
Каждая купленная работа – это шаг к вашей успешной сдаче и мой стимул делать ещё лучше. Вместе мы создаём круговорот добра в учебе 🥰

Комментарии

Нет комментариев
Стань первым, кто что-нибудь напишет!
Поделитесь ссылкой:
Цена: 400 290 руб.
Расширенная гарантия +3 недели гарантии, +10% цены
Рейтинг автора
5 из 5
Поделитесь ссылкой:
Сопутствующие материалы

Подобрали для Вас услуги

-30%
-33%
Вы можете использовать полученные ответы для подготовки к экзамену в учебном заведении и других целях, не нарушающих законодательство РФ и устав Вашего учебного заведения.
Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7011
Авторов
на СтудИзбе
261
Средний доход
с одного платного файла
Обучение Подробнее
{user_main_secret_data}