Популярные услуги

Курсовой проект по деталям машин под ключ
КМ-4. Типовое задание к теме косвенные измерения. Контрольная работа - любой вариант за 5 суток.
КМ-3. Типовое задание к теме прямые измерения. Контрольная работа (ИЗ1) - любой вариант!
Курсовой проект по деталям машин под ключ в бауманке
ДЗ по ТММ в бауманке
Все лабораторные под ключ! КМ-1. Комбинационные логические схемы + КМ-2. Комбинационные функциональные узлы и устройства + КМ-3. Проектирование схем
КМ-3. Задание по Matlab/Scilab. Контрольная работа - любой вариант за 3 суток!
Допуски и посадки и Сборочная размерная цепь + Подетальная размерная цепь
ДЗ по матведу любого варианта за 7 суток
Любая лабораторная в течение 3 суток! КМ-1. Комбинационные логические схемы / КМ-2. Комбинационные функциональные узлы и устройства / КМ-3. Проектирование схем

Основные положения

2021-03-09СтудИзба

Модуль 1

Лекция 1

План лекции:

Основні положення. Вогнетриви та ізоляційні матеріали печей.

Теплотехніка печей металургійного виробництва. Класифікація вогнетривів та ізоляційних матеріалів. Теплотехнічні характеристики вогнетривів та ізоляційних матеріалів. Нові матеріали, які застосовуються в металургійних печах. Кладка печі. Конструкції сводів, вікон та допоміжних вузлів печі, їхнє призначення.

1  Основные положения. Огнеупорные и изоляционные материалы печей

1.1  Теплотехника печей металлургического производства

Промышленная печь – устройство для тепловой обработки материалов.

Печи делят на пламенные и электрические. По технологическому назначению печи делят на следующие виды:

1) печи для удаления влаги из материала, например, сушильные печи;

2) нагревательные печи, например, нагревательные колодцы и методические печи;

3) обжиговые печи, например, печи для обжига известняка;

4) плавильные печи, например, мартеновские печи;

Рекомендуемые материалы

5) печи для разложения (диссоциации) и возгонки материалов, например, коксовые печи.

Разберем основные элементы печей на примере камерной нагревательной печи (рис. 1.1):

1) металлический каркас – устройство для фиксации элементов печи при её разогреве;

Описание: рис

Рис. 1.1 – Основные элементы печи:

1 ‑ металлический каркас; 2 ‑ футеровка (свод, стены, подина); 3 ‑ рабочее пространство печи; 4 ‑ горелка; 5 ‑ борова (дымоходы); 6 ‑ газовоздухопроводы; 7 ‑ теплообменник; 8 ‑ дымовая труба; 9 ‑ дымовой шибер; 10 ‑ дроссели; 11 ‑ задвижки; 12 ‑ нагреваемый материал

2) футеровка (огнеупорная кладка) – ограждение высокотемпературной зоны, состоящее из стен, свода и подины. Служит для отделения рабочей камеры от окружающего пространства и для уменьшения тепловых потерь. Уменьшение тепловых потерь позволяет получать высокую температуру внутри печи;

3) рабочее пространство печи – замкнутый объем, в котором располагается нагреваемый материал;

4) тепловырабатывающие устройства – устройства для подачи энергии в рабочее пространство печи и преобразования ее в теплоту. Устройства для сжигания газообразного и пылевидного твердого топлива называются горелками, для сжигания жидкого топлива – форсунками, для сжигания твердого топлива в слое – топками. Устройства для преобразования электрической энергии в теплоту называются термоэлектрическими нагревателями (ТЭНы);

5) борова (дымоходы) – дымоотводящие каналы. Служат для удаления продуктов горения из рабочего пространства печи в дымовую трубу;

6) газовоздухопроводы – трубопроводная система для подачи газа и воздуха к горелкам;

7) теплообменник – устройство для нагрева воздуха и топлива за счет теплоты, уносимой продуктами горения из рабочего пространства печи (рекуператор или регенератор), а также за счет сжигания дополнительного топлива (воздухонагреватель доменной печи). В рекуператоре дым передает теплоту воздуху (газу) через тонкую керамическую или металлическую разделительную стенку. Дым и воздух (газ) находятся в рекуператоре одновременно. В регенераторе дым и воздух (газ) движутся по одним и тем же каналам: сначала пропускают дым и теплота передается от дыма керамической насадке, а затем пропускают воздух (газ), который принимает теплоту от насадки. Нагрев воздуха (газа) в теплообменнике позволяет получить высокую температуру в рабочем пространстве печи и снизить расходы топлива;

8) дымовая труба – устройство для удаления дыма из рабочего пространства печи в атмосферу. Дымовая труба выполняет две функции: теплотехническую (создание необходимого разрежения) и экологическую (рассеивание вредных выбросов);

9) дымовой шибер – устройство с центральным элементом в виде пластины для регулирования давления дыма в рабочем пространстве печи путем перекрытия поперечного сечения борова. В период максимальной подачи топлива в печь шибер находится в верхнем крайнем положении, т.е. максимально открыт. Шибер служит также для отключения печи от дымовой трубы во время ремонтов печи;

10) дроссели и 11) задвижки – устройства для регулирования расхода газов. Дроссель – устройство для плавного регулирования расхода воздуха и газа через горелки. Задвижка – устройство для отключения газовоздухопроводов от печи на время её ремонта;

12) нагреваемый материал;

13) тягодутьевые устройства: вентиляторы, компрессоры, дымососы. Служат для подвода к печи газа и воздуха и отвода от печи дыма на дымовую трубу.

Перечисленные основные элементы присущи большинству известных печей. В отдельных печах встречаются дополнительные элементы. Например, перекидные устройства (клапаны Фортера и Симплекса) в печах регенеративного типа, транспортирующие устройства для перемещения подины в кольцевых, роликовых печах и печах с шагающими балками и другие устройства.

1.2  Классификация огнеупоров и теплоизоляционных материалов

Огнеупорные изделия применяют для строительства рабочего пространства и других элементов печей, работающих в условиях высоких температур и воздействия агрессивных сред – расплавов, окалины, газов. Чтобы уменьшить потери теплоты, футеровку печи по толщине делают, как правило, комбинированной: рабочий слой выполняют из огнеупорных, наружный слой – из теплоизоляционных изделий.

1.2.1  Классификация огнеупорных изделий

Применяемые в промышленности огнеупоры делят на изделия, которым при изготовлении придается определенная форма (кирпичи, фасонные изделия, крупные блоки) и неформованные материалы (бетоны, торкрет-массы, мертели).

В основу классификации огнеупорных изделий положено шесть основных признаков: 1) химико-минеральный состав, 2) огнеупорность, 3) пористость, 4) способ формования, 5) термическая обработка, 6) форма и размеры.

1. По химико-минеральному составу изделия делят на следующие группы, зависящие от содержания оксидов (%), определяющих их свойства:

а) кремнеземистые: динасовые (SiO2 ³ 93); кварцевые (SiO2 ³ 85);

б) алюмосиликатные: полукислые (SiO2<85), шамотные (Al2O3 28-45), муллитокремнеземистые (А12О3 45-62), муллитовые (А12О3 62-72), муллитокорундовые (А12О3 72-90);

в) глиноземистые – корундовые (А12О3 > 90);

г) магнезиально-периклазовые (магнезитовые) (MgO ³ 85);

д) магнезиальноизвестковые: периклазоизвестковые (магнезитодоломитовые) (MgO 35-75; СаО 15-40); известковопериклазовые (доломитовые) (MgO 10-50; СаО 45-85);

е) периклазохромитовые (MgO > 60; Сr2О3 5-20); хромитопериклазовые (MgO 40-60; Cr2O3 15-35); хромитовые (MgO < 40; Сr2О3 > 30);

ж) периклазошпинельные (MgO > 40; А12О3 5-55); шпинельные (MgO 25-40; А12О3 55-70);

з) магнезиальносиликатные: периклазофорстеритовые (MgO 65-85; SiO2 > 7); форстеритовые (MgO 50-65; SiO2 25-40); форстеритохромитовые (MgO 45-60; SiO2 20-30; Cr2O3 5-15);

и) углеродистые с огнеупорной основой С (углеродсодержащие, неграфитированные, графитшамотные);

к) карбидокремниевые с огнеупорной основой SiC (карбидокремниевые, карбидокремнийсодержащие);

л) цирконовые с огнеупорной основой ZrO2 (цирконовые, циркониевые);

м) окисные с огнеупорной основой А12О3, TiO2, BeO, НfO2 (корундовые, титановые, берилловые, гафниевые);

н) некислородные (нитридные, боридные, сульфидные).

Нa заводах применяют еще техническую классификацию, в соответствии с которой все огнеупоры разделяются на три группы:

а) кислые (в составе преобладает оксид SiO2);

б) нейтральные (содержащие высокий процент С или Сr2О3);

в) основные (с преобладающим содержанием основных оксидов (MgO, CaO).

2. По огнеупорности все огнеупоры разделяют на три группы:

а) огнеупорные (огнеупорность 1580-1770 °С);

б) высокоогнеупорные (огнеупорность 1770-2000 °С);

в) высшей огнеупорности (огнеупорность >2000 °С).

3. По пористости:

а) особоплотные (с открытой пористостью до 3 %);

б) высокоплотные (3-10 %);

в) плотные (10-16 %);

г) уплотненные (16-20 %);

д) среднепористые (20-30 %);

е) повышеннопористые (30-45 %);

ж) легковесные (с общей пористостью 45-85 %);

з) ультралегковесные (с общей пористостью > 85 %).

4. По способу формования:

а) пластичноформованные;

б) полусухого формования из масс малопластичных или из порошков с добавкой связующего материала, изготовленные путем механического, гидравлического или вибрационного прессования; при  изготовлении  крупных блоков применяется пресстрамбование;

в) плавленые литые из расплава, получаемого обычно путем электроплавки;

г) литые, изготовленные путем литья из жидкого шликера в специальные формы (пеноизделия);                                                          '

д) термопластичнопрессованные, изготовленные прессованием из шихты, в состав которой введены термопластичные добавки (парафин, воск и т.п.);

е) горячепрессованные;

ж) изготовленные горячим прессованием из масс, нагретых до пластичного состояния;

з) пиленые из естественных горных пород или из специально изготовленных блоков;

и) волокнистые, полученные путем расщепления расплава струей острого перегретого пара.

5. По термической обработке:

а) обожженные, обжигаемые в печах в процессе изготовления изделий;

б) безобжиговые, не подвергавшиеся обжигу до употребления в кладку;

в) плавленые, подвергнутые отжигу после отливки;

г) горячепрессованные.

6. По форме и размерам различают:

а) простые изделия (прямые и клиновые нормальных, малых и больших форматов);

б) фасонные – простые, сложные, особо сложные и крупноблочные (массой > 60 кг);

в) специальные – промышленного и лабораторного назначения (тигли, трубки, наконечники и т.п.).

Неформованные огнеупорные материалы классификации, установленной ГОСТом, не имеют.

1.2.2  Классификация теплоизоляционных материалов

Теплоизоляционные материалы делят по ряду признаков на следующие группы:

по огнеупорности – на огнеупорные, выдерживающие рабочую температуру 800 °С, и неогнеупорные, которые могут быть использованы только при температурах ниже 800 °С;

по происхождению – на естественные и искусственные;

по форме и способу применения – теплоизоляционные материалы выполняются в виде изделий (кирпичей, листов и т.д.) или в виде неформованных материалов (засыпки, ваты, волокон и др.).

К огнеупорным естественным теплоизоляционным материалам относятся: диатомит, инфузорная земля, трепел и вермикулит.

К искусственным теплоизоляционным материалам относятся пористые легковесные огнеупоры и изделия из различных волокон. Легковесные изделия могут изготавливаться из шамота, динаса, диатомита, высокоглиноземистого сырья и т.п. Для получения легковесных огнеупоров с высоким процентом равномерно распределенной пористости применяют три различных способа: 1) выгорающих добавок; 2) пеноспособ; 3) химический.

1.3  Теплотехнические характеристики огнеупорных и теплоизоляционных материалов

1.3.1  Теплотехнические характеристики огнеупорных материалов

Огнеупорность определяется как температура Тогн, при которой происходит деформация стандартного образца в форме усеченной пирамиды при отсутствии механического и физико-химического воздействия. Огнеупорные изделия подразделяют на три группы: средней огнеупорности (огнеупорные) – Тогн до 1770 °С; высокой огнеупорности (высокоогнеупорные) Тогн от 1770 °С до 2000 °С, высшей огнеупорности – Тогн – выше 2000 °С. Предельная рабочая температура службы огнеупоров в условиях эксплуатации Tmax значительно ниже, чем Тогн.

В таблице 1.1 приведены свойства наиболее широко используемых печных огнеупоров. Все огнеупоры характеризуются такими важными эксплуатационными показателями, как термостойкость, шлакоустойчивость, строительная прочность, изменение объема при нагреве, которые определяют их применение для строительства элементов печей.

Термостойкостью называют способность огнеупоров выдерживать циклическое изменение температур при нагреве и охлаждении, так называемые теплосмены. Термостойкость характеризуют числом теплосмен до потери 20% первоначальной массы огнеупора в результате образования трещин и скалывания.

Шлакоустойчивость характеризует способность огнеупора выдерживать воздействие жидкого шлака и металла, окалины, газов.

Рассмотрим характеристики и область применения некоторых печных огнеупоров.

Динас содержит более 93% SiO2 и относится к кремнеземистым, кислым огнеупорам. Обладает высокой строительной прочностью, высокой температурой начала деформации под нагрузкой и соответственно рабочей температурой службы 1650–1700 °С. Устойчив к воздействию кислых расплавов и газовых сред, но не выдерживает контакта с основными расплавами металлов и их оксидов. Термостойкость динаса по стандартной методике не превышает 1-2 водяных теплосмен. Однако, если колебания температуры происходят в области значений выше 300 °С и особенно выше 600 °С, то термостойкость динаса исключительно высока.

Динас широко применяют для изготовления высокотемпературной части насадки доменных воздухонагревателей и регенераторов нагревательных колодцев, которая не охлаждается ниже 600 °С, для кладки распорных сводов.

Таблица 1.1 – Свойства огнеупоров, наиболее широко используемых в печах

Группа огнеупоров

Главные хим. компоненты в % (мас.)

Тогн, °С

Tmax, °С

Плотность – r, т/м3

Коэф. теплопроводности – l, Вт/(м×К) при 100 °С

Уд. теплоемкость – с, кДж/(кг×К) при 100 °С

1

Динасовые

SiO2³93

1690-1720

1650-1700

1,84-1,97

1,3

0,86

2

Шамотные

30£Al2O3£45

1580-1750

1200-1400

1,83-1,95

0,9

0,9

3

Муллитовые

62£Al2O3£72

1600-1800

1600-1650

2,34-2,52

1,2

0,86

4

Корундовые

Al2O3>90

1950-2000

1650-1800

2,89-3,12

2,1

0,83

5

Смолодоломитовые

50<MgO<85
10<CaO<45

1800-1900

1300-1400

2,7-2,8

3,4

0,96 при 1000°С

6

Периклазовые (магнезитовые)

MgO³85

2200-2400

1650-1700

2,6-2,8

4,5

1,08

7

Периклазохромитовые

MgO³60
5£Cr2O3£20

2000

1650-1700

2,95-3,04

2,5

1,0

8

Хромитопериклазовые

40£MgO£60
15<Cr2O3<35

1920-2000

1700

2,9-3,15

2,0

1,8 ¸ 1,15
(20-1000°С)

9

Цирконовые

ZrO2>50,
SiO2>25

2000-2300

1900-2000

3,48-3,83

1,4

0,64

10

Карбидкремниевые

SiC>70

2000

1800-2000

2,35-2,54

9,3 при 1000°С

0,97

Шамот относится к алюмосиликатным огнеупорам, содержащим кроме SiO2 до 45% Al2O3. Обладает более высокой термостойкостью (10-20 водяных теплосмен), но низкой шлакоустойчивостью. Наиболее широко применяется в печестроении при температурах до 1350 °С для строительства стен, сводов, не контактирующих с оксидами металлов, для низкотемпературной части регенеративной насадки. Не выдерживает истирающего действия при высоких температурах.

Муллит и корунд относятся к высокоглиноземистым алюмосиликатным огнеупорам. По мере увеличения содержания Al2O3 повышается их рабочая температура службы, прочность и постоянство объема при разогреве. Термостойкость превышает 150 водяных теплосмен. Применяются вместо шамота в условиях более высоких температур: муллит – до 1650 °С, корунд – до 1800 °С. Плавленые корундовые изделия обладают высокой шлакоустойчивостью и выдерживают давление и истирающее действие металла и шихты. Применяются в установках внепечной обработки стали, в монолитных подинах методических нагревательных печей, в качестве насадки шариковых регенераторов.

Периклаз (или магнезит) содержит не менее 85% MgO. Температура начала размягчения под нагрузкой значительно ниже огнеупорности. Максимальная рабочая температура 1700 °С. Термостойкость изделий невысока и составляет 1-2 водяных теплосмены.

Шлакоустойчивость по отношению. к основным расплавам – металлам и шлакам, богатым оксидами металлов и известью, исключительно высока. Поэтому магнезитовые кирпичи используются для кладки элементов печей черной и цветной металлургии, которые контактируют с расплавами металлов и основных шлаков. Магнезитовый порошок используют для заполнения швов при кладке подин плавильных печей.

Периклазохромитовые и хромитопериклазовые огнеупоры содержат в качестве основы MgO и хромит Cr2O3. Свойства этих огнеупоров существенно отличаются от периклазовых и зависят от соотношения хромита и магнезита. Максимальная термостойкость соответствует отношению Cr2O3:MgO = 30:70. Шлакоустойчивость выше при содержании хромита 20 %. В сводах сталеплавильных печей наибольшую стойкость имеют изделия с содержанием хромита 20-30 %. Они изнашиваются из-за образования трещин и сколов, к которым приводят термические напряжения, возникающие при колебании температуры в рабочем пространстве печи.

Смолодоломитовые безобжиговые огнеупоры содержат в качестве основы MgO и СаО, а также углерод в виде смоляной связки в количестве 2-4 %. Они применяются для футеровки конвертеров. Известь СаО взаимодействует с силикатами конвертерного шлака, благодаря чему на поверхности футеровки образуется гарниссаж, препятствующий проникновению шлака в футеровку.

Углеродистые огнеупоры изготавливаются из доступного сырья – графита, кокса – с высокой температурой плавления ³ 3500 °С. Они не смачиваются расплавами и поэтому устойчивы против них, имеют высокую термостойкость, но начинают окисляться в продуктах горения топлива при температуре ³ 600 °С. Поэтому их используют для службы в восстановительной среде: в электрических печах для производства ферросплавов, алюминия, свинца, в лещади доменных печей, в качестве припаса для разливки металлов, для изготовления электродов дуговых плавильных печей.

Карбидкремниевые огнеупоры содержат в качестве главного компонента SiC – карборунд. Они покрыты защитной плёнкой SiO2, поэтому не окисляются как углеродистые. Имеют высокую прочность, износоустойчивость, термостойкость. Устойчивы против нейтральных и кислых расплавов, нестойки против основных. Применяются для изготовления трубок керамических рекуператоров, огнеупорных муфелей.

Неформованные огнеупоры применяют для изготовления монолитных футеровок из огнеупорного бетона и набивных масс. Огнеупорный бетон представляет собой смесь огнеупорного наполнителя (бой огнеупорных изделий) с размером частиц от 0,5 до 70 мм, вяжущего и добавок. В качестве вяжущего используют твердеющие в холодном состоянии огнеупорные цементы (глиноземистый, магнезиальный), жидкое стекло, фосфатные связки на основе ортофосфорной кислоты Н3РО4. Добавки могут регулировать скорость схватывания и твердения, улучшать пластические свойства, уменьшать усадку.

Широко распространены динасовые бетонные блоки и панели для стен нагревательных колодцев, глинистокварцитовые массы для набивной футеровки ковшей. Применяют монолитную футеровку стен и сводов нагревательных печей из жидкого (литого) бетона с креплением её к металлическому каркасу печи с помощью анкерных кирпичей, распределенных по площади стен и свода.

Защитные гарниссажи образуются на рабочей поверхности ограждения плавильных, шахтных и дуговых печей из спекающихся или расплавленных материалов при интенсивном охлаждении стен печи водой или воздухом. В плавильных печах цветной металлургии гарниссаж является эффективным средством защиты, а иногда и замены футеровки.

1.3.2  Теплотехнические характеристики теплоизоляционных материалов

Для тепловой изоляции металлургических печей применяются три вида изделий: 1) легковесные пористые огнеупорные кирпичи: шамот-легковес, динас-легковес, диатомитовый и другие; 2) теплоизоляционные засыпки; 3) изделия в виде плит, ваты, войлока, картона, изготовленные на основе керамического волокна в смеси со связующим материалом, так называемые волокнистые огнеупоры. Волокнистые огнеупоры являются относительно новыми теплоизоляционными материалами.

Легковесные огнеупорные кирпичи обладают большой пористостью и поэтому меньшей плотностью и теплопроводностью, чем обычные огнеупорные кирпичи (табл. 1.2). Марка кирпича в табл. 1.2 расшифровывается так: Д – динас, Ш – шамот, Л – легковес, числа после тире означают плотность. Чем меньше плотность кирпича, тем лучше его теплоизоляционные свойства, но ниже максимальная рабочая температура.

По сравнению с обычными огнеупорами шамот-легковес и другие легковесы имеют более низкую прочность, шлакоустойчивость и термостойкость. Их можно применять не только для теплоизоляционного слоя футеровки, но и для рабочего слоя, в термических печах. Диатомитовый кирпич применяют только для наружного слоя тепловой изоляции стен и свода нагревательных печей.

Таблица 1.2 – Свойства легковесных огнеупорных изделий

№пп

Тип и марка изделия

Плотность – r, т/м3

, °С

Коэф. теплопроводности – l, Вт/(м×К)

Уд. теплоемкость – с, кДж/(кг×К) в интервале 0‑1400 °С

1

Динас ДЛ-1,2

1,2

1500

0,58+0,38×10-3×t

1,19

2
3
4

Шамот ШЛ-1,3
ШЛ-0,9
ШЛ-0,4

1,3
0,9
0,4

1350
1200
1100

0,47+0,14×10-3×t
0,29+0,20×10-3×t
0,06+0,14×10-3×t

1,19
1,17
1,17

5

Диатомитовый кирпич

0,5

1000

0,15 (при t=350 °С)

1,0

В качестве засыпок используются, в основном, естественные теплоизоляционные материалы: диатомит, инфузорная земля, трепел и вермикулит. Первые три материала имеют состав SiO2×nH2O.

Диатомит – продукт разложения водорослей, имеет рыхлую землистую структуру. Применяют в виде порошка или изделий, изготовленных на глинистой связке: плотность изделий 500, 600 и 700 кг/м3, коэффициент теплопроводности соответственно равен 0,18, 0,21, 0,27 Вт/(м×К). Коэффициент теплопроводности засыпки из диатомита колеблется в пределах 0,12-0,16 Вт/(м×К). Предельная температура применения диатомитовых изделий 1000 °С, засыпки 900 °С.

Инфузорная земля является продуктом разложения животных организмов; применяют чаще в виде порошка.

Трепел – продукт выветривания горных пород, пористый материал с низкой теплопроводностью; применяют в виде порошка или изделий. По свойствам изделия из трепела близки к диатомитовым.

Вермикулит — это разновидность слюды, имеющая способность при нагреве значительно увеличивать свой объем. Используют вермикулит в виде засыпки или в виде плит. Применяется до температуры 700-900 °С. В обожженном виде носит название – зонолит. Предельная температура применения зонолита 1000-1100 °С. Коэффициент теплопроводности вермикулита и зонолита 0,1 Вт/(м×К).

К неогнеупорным изоляционным материалам относится асбест. Асбест является водным силикатом магния состава 3MgO×2SiO2×2H2O, имеет волокнистое строение, пористый. Применяют в виде крошки для засыпки или в виде изделий – шнура, картона, плит, ткани и ваты.

1.3.3  Новые материалы, которые используются в металлургических печах

В таблице 1.3 представлены некоторые виды волокнистых огнеупорных изделий и их свойства. Волокнистые плиты, как и шамот-легковес, применяют для изготовления не только изоляционного, но и рабочего слоя футеровки термических печей с целью снижения потерь теплоты в рабочем пространстве печи. При этом уменьшаются два вида потерь: на аккумуляцию теплоты футеровкой и теплопроводностью через футеровку в окружающую среду.

Таблица 1.3 – Виды волокнистых огнеупорных изделий Северского огнеупорного завода (Донецкая область)

№ пп

Тип и марка изделия

Толщина, мм

Плотность – r, т/м3

, °С

Коэф. теплопроводности – l, Вт/(м×К) при 600 °С

Уд. теплоемкость – с, кДж/(кг×К)

1

Плита

ШПГТ-450

100

0,45

1300

0,2

1,0

2

Вата МКРР-130

15; 20

0,13

1250

0,22

1,0

3

Войлок МКРВЦ-150

15; 20

0,15

1400

0,14

1,0

4

Фетр МКРВЦФ-130

15; 20

0,13

1400

0,18

1,0

1.4  Кладка печи. Конструкции сводов, окон и вспомогательных узлов печи, их назначение

Ограждение печей из огнеупорных и теплоизоляционных материалов называется кладкой или футеровкой. Футеровка является ответственной частью всех промышленных печей. От ее службы зависит надежность работы печи и длительность кампании. Элементами футеровки являются под, стены и свод.

Кладка должна быть, по возможности, непроницаемой для расплавленных металлов и шлаков, а также для печных газов.

В зависимости от требуемой тщательности работы кладку разделяют на категории, для каждой из которых допустимая толщина шва строго регламентирована:

а) особо тщательная, со швами толщиной не более 1 мм – для футеровки плавильных печей в местах возможного контакта с жидкой средой;

б) тщательная, со швами толщиной не более 2 мм – для футеровки, подвергающейся истирающему воздействию и для нагревательных печей с температурой до 1400 °С;

в) обыкновенная, со швами толщиной не более 3 мм – для футеровки, неконтактирующей с жидким металлом и шлаком, и для нагревательных печей с температурой до 1200 °С;

г) простая, со швами толщиной до 4 мм – для выполнения нижних слоев пода.

Рабочий слой футеровки в местах, где требуется наибольшая плотность, выкладывают особенно тщательно со швами не более 0,5 мм. При кладке боровов допускается шов толщиной до 5 мм, а при наружной облицовке печи красным или изоляционным кирпичом толщину шва принимают равной 8-10 мм. Кирпич в кладке может располагаться по разному – на плашку, на торец или на ребро (рис. 1.2) с обязательным смещением швов (с перевязкой). Это делает кладку более устойчивой и плотной. Огнеупорный слой кладки с теплоизоляционным обычно не перевязывают, так как они имеют разные коэффициенты термического расширения, что при нагреве кладки может привести к ее разрушению.

Для компенсации термического расширения кладки в ней предусматривают температурные швы, размеры которых зависят от рабочей температуры и от применяемого для кладки материала. Ширина термических швов колеблется в пределах от 5 до 15 мм на 1 м кладки.

Рис. 1.2 – Расположение кирпича в кладке:

а – на плашку; б – на ребро; в – на торец; г – ложковая кладка; д – тычковая кладка

Под печи

Под печи выкладывают или прямо на фундамент или на стальные листы, опирающиеся на балки. Воздушный зазор, образующийся при этом между подом и фундаментом, предохраняет последний от перегрева.

Под печи часто подвергается механическим ударам загружаемых материалов и химическому действию окалины или жидкого металла, поэтому его всегда выполняют многослойным

Нижние ряды (выстилка) кладут на плашку из теплоизоляционного или красного кирпича. Верхние ряды выполняют из огнеупорных материалов, выбираемых в соответствии с условиями службы. Кладку ведут на ребро или торец с обязательным соблюдением перевязки швов. Иногда верхний ряд пода выкладывают «в елку». В плавильных печах рабочий слой обычно выполняют бесшовным - набивным или наварным. Кладка пода приведена на рис. 1.3.

Описание: Кладка подины

Рис. 1.3 – Кладка подины нагревательных печей:
а – простая на ребро; б ‑ в елку

В доменных печах под (лещадь) выполняют из блоков. Толщина пода термических и нагревательных печей, в зависимости от их размеров и рабочей температуры составляет 230-465 мм. В плавильных печах она достигает 1200 мм, а в доменных печах лещадь кладут толщиной 5 м и более.

Стены печи

Кладку стен ведут, как и пода, с перевязкой швов, для чего меняют положение кирпича, чередуя тычковые и ложковые ряды (кирпич, уложенный длинной стороной параллельно плоскости стены, называется ложковым, а уложений перпендикулярно – тычковым).

Кладку стен нагревательных печей ведут строго вертикально, а стены плавильных печей, с целью повышения их стойкости, часто делают наклонными с толщиной, уменьшающейся кверху.

Стены выполняют двух- или трехслойными. Внутренний рабочий слой выкладывают из огнеупорного материала, отвечающего требованиям, зависящим от характера работы печи. Он должен иметь необходимую огнеупорность, химическую и механическую стойкость. Наружный слой делают из теплоизоляционного материала, назначение которого снизить потери тепла через кладку теплопроводностью.

Иногда стену выполняют из нескольких слоев (например, динас-шамот-изоляционный). Каждый слой кладут самостоятельно и только при высоте стен более 2,5-3,0 м огнеупорную кладку для повышения прочности перевязывают с изоляционной через каждые 5-6 рядов. Для повышения стойкости стен большой высоты в ряде случаев применяют анкерное крепление кладки.

Толщина стен нагревательных печей колеблется от 0,345 до 0,565 м, плавильных 0,9-1,1 м; доменных печей 1,1-1,6 м.

В печах периодического действия стены, по возможности, выполняют из легковесных материалов с целью снижения потерь на аккумуляцию тепла кладкой. При выполнении футеровки электрических печей для экономии электрической энергии слой тепловой изоляции делают толще, чем в топливных печах.

Свод печи

Своды печей выполняют арочными, купольными или подвесными.

Арочные своды применяют при ширине пролета до 3 м. Для металлургических печей преимущественно применяют арочные своды с центральным углом 60, 90, 120 и 180° (соответственно рис. 1.4 а-г).

Рис. 1.4 – Схемы сводов

На основании практических данных установлены следующие соотношения и определения радиуса R и стрелы свода f:

j, град

60

90

120

180

R

1×В

0,707×В

0,577×В

0,5×В

f

0,134×В

0,207×В

0,289×В

0,5×В

Для печей чаще принимают R = В, т. е. радиус равный ширине пролета B, для боровов R = 0,5×В. Толщина свода S обычно равна длине кирпича – 230, 250 или 300 мм. Если свод выполняют из двух рядов кирпича по толщине, то ряды (акаты) не перевязывают друг с другом. Своды нагревательных печей выполняют с изоляцией, применяя для этого засыпку толщиной 65-230 мм. Своды плавильных печей обычно делают без тепловой изоляции во избежание перегрева и быстрого их износа.

Ещё посмотрите лекцию "4 Вынос в натуру проектных отметок" по этой теме.

Купольными сводами называются своды круглых печей. Их выполняют целиком из фасонного кирпича.

Подвесные своды нагревательных печей применяют при ширине пролета более 3 м. Для их выполнения используют фасонные кирпичи из шамота класса А и каолина, в местах пережимов (криволинейные участки сводов методических печей) применяют высокоглиноземистые кирпичи. Примеры выполнения подвесных сводов показаны на рис. 1.5. Как правило, подвесные своды выполняются однослойными без применения теплоизоляции во избежание перегрева металлических элементов, на которых крепятся фасонные кирпичи, с последующим обрушением сводов.

Рис. 1.5 – Примеры выполнения подвесных сводов нагревательных печей

Своды плавильных печей очень массивны, поэтому их выполняют распорно-подвесными, при этом часть веса свода передается через подпятовые балки на стойки каркаса. Часто, во избежание перегрева сводов плавильных печей, устраивается принудительное воздушное охлаждение наружной поверхности свода с использованием вентилятора.

Съемные своды электрических печей или крышки нагревательных колодцев монтируют в специальных металлических рамах, воспринимающих все нагрузки и обеспечивающих их длительную службу.

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5224
Авторов
на СтудИзбе
426
Средний доход
с одного платного файла
Обучение Подробнее