Популярные услуги

Главная » Лекции » Сельское хозяйство и пищевая промышленность » Безопасность продовольственных продуктов » Загрязнители сырья и пищевых продуктов, нормативы безопасности

Загрязнители сырья и пищевых продуктов, нормативы безопасности

2021-03-09СтудИзба

ЛЕКЦИЯ 11

Загрязнители сырья и пищевых продуктов, нормативы безопасности

Содержание лекции:

1. Химическое загрязнение тяжелыми металлами

2.Токсическое действие загрязняющих веществ

 3 Токсичность тяжелых металлов в организме человека.

1

Пища и вода, загрязненные тяжелыми металлами, представляют угрозу для здоровья населения.  Свинец обладает способностью к образованию соединений в костях и может замещать кальций. Было показано, что всасывание и удерживание свинца в желудочно-кишечном тракте может изменяться в широких пределах в зависимости от химического режима в просвете желудочно-кишечного тракта, возраста человека и запасов железа в организме. Кроме того, установлено, что следствиями продолжительного воздействия свинца низкой интенсивности являются гемотоксичность и нейротоксичность, анемия и сниженные умственные способности.

Рекомендуемые материалы

Значительное число бытовых водопроводных систем включает свинцовые трубы или свинцовый припой. Свинец также содержится в большинстве оцинкованных железных труб, поэтому он может накапливаться в воде. Таким образом, на поступление свинца в организм грудного ребенка может влиять содержание свинца в воде, особенно  если воду дают ребенку для питья или добавляют в детские питательные смеси или пищу для прикорма.

Кадмий

В ряде европейских стран сообщается о поступлении в организм  взрослого населения  и детей раннего возраста кадмия в количествах, близких к рекомендуемым пределам или превышающих эти пределы. Тем не менее, это не считается серьезной проблемой, так как пределы эти относятся к регулярному поступлению в течение 50 лет . Наивысшие концентрации кадмия в питьевой воде были установлены в регионе Аральского моря.

Диоксины и ПХД

Диоксин – это общепринятое название 2,3,7,8-тетрахлордибензо- р-диоксина (ТХДД), но оно также используется для обозначения структурно и химически родственных полихлорированных дибензо- р-диоксинов (ПХДД), полихлорированных дибензофуранов (ПХДФ) и полихлорированных дифенилов (ПХД). ТХДД может поступать в организм перорально, свободно распределяется в жировой ткани и выводится в неизмененном виде с калом, а также в результате происходящего в печени обмена веществ. Токсичными считаются 7 ПХДД и 10 ПХДФ, диоксиноподобной токсичностью обладают 11 ПХД. Большинство токсичных диоксинов образуются в ходе процессов промышленного хлорирования, сжигания городских отходов или при производстве некоторых гербицидов. Все эти соединения являются жирорастворимыми и очень устойчивы, и поэтому они встречаются в мясе, молоке, рыбе, грудном молоке и в тканях человеческого организма .

Высокие уровни диоксинов отмечаются в некоторых районах Центральной Азии, особенно в регионе Аральского моря. В грудном молоке у матерей из сельскохозяйственных районов Казахстана зафиксированы концентрации ТХДД порядка 50 пг/г липидов.

Нитраты, нитриты и метгемоглобинемия

Токсичность нитрата для человека объясняется главным образом, его превращением в нитрит путем восстановления. Нитрит особенно вреден для здоровья, так как он участвует в окислении гемоглобина в метгемоглобин, который не в состоянии переносить кислород к тканям. Вследствие их чувствительности к окисляющим веществам,   маленькие дети особенно чувствительны к действию таких ядов, как нитриты, и поэтому более восприимчивы к развитию метгемоглобинемии, чем дети более старшего возраста и взрослые.

Главным источником нитрата для людей является питьевая вода, и метгемоглобинемия часто возникает в тех случаях, когда люди потребляли воду с высоким содержанием нитратов. Главной причиной повышения уровня нитратов в грунтовых водах является интенсификация сельского хозяйства.

Нормативы качества воды по содержанию нитратов (менее 50 мг/ литр) или нитритов (менее 3 мг/литр) представляются вполне достаточными для предохранения от метгемоглобинемии , однако в некоторых районах бывшего Советского Союза, включая республики Центральной Азии, в воде могут присутствовать гораздо более высокие уровни . Овощи и фрукты также могут содержать высокие концентрации нитратов: были сообщения о возникновении метгемоглобинемии после употребления пюре из шпината, морковного супа и сока домашнего приготовления.

Микотоксины: афлатоксин

Сообщалось о присутствии афлатоксина в мясе, коровьем молоке, детском питании на молочной основе и особенно в молочных продуктах в юго-восточной части Казахстана. Хотя и установлено, что концентрации афлатоксина в  продуктах в большинстве стран находятся в пределах допустимых уровней, необходимо тщательно оценивать уровни содержания, так как даже очень малые количества афлатоксина могут отрицательно действовать на организм. Необходимо регулярно проводить анализ  продуктов промышленного производства для выявления возможной угрозы загрязнения афлатоксином .

Пестициды: ДДТ и гексахлорбензол

Накопление жирорастворимых пестицидов в жировой ткани  детей, в частности, накопление ДДТ и гексахлорбензола, которые могут присутствовать в пище , может объясняться не только грудным вскармливанием, но и воздействием в период внутриутробного развития. ДДТ продолжает использоваться в Казахстане, Таджикистане и Туркменистане . Это жирорастворимое соединение, и в некоторых странах его заметные концентрации до сих пор отмечаются в свином, говяжьем и курином жире, а также в молоке и молочных продуктах . Применение гексахлорбензола в качестве фунгицида для обработки злаков привело к тому, что он вследствие своей жирорастворимости появился в молоке и молочных продуктах и в грудном молоке. В ходе обследования в Казахстане были установлены такие содержания гексахлорбензола , которые относятся к наиболее высоким уровням, до сих пор отмеченным в литературе .

2.Токсическое действие загрязняющих веществ

 Неконтролируемое загрязнение окружающей среды тяжелыми металлами (ТМ) угрожает здоровью людей. Прием продуктов с токсическими веществами  приводит к необратимым изменениям внутренних органов. В результате развиваются неизлечимые болезни: нарушения желудочно-кишечного тракта, печени, почечные и печеночные колики, параличи. Нередки смертельные случаи.
              В связи с этим необходимо максимально снизить уровень поступления тяжелых металлов в организм человека. В частности, путем получения продукции растениеводства (пищи для человека и сельскохозяйственных животных, которые в свою очередь также являются источником продуктов питания для человека) свободной от загрязнения ТМ. Следовательно, необходимо проводить химический анализ почв на содержание каждого из наиболее опасных металлов.
В Нидерландах разработана нормативная база концентрации тяжелых металлов. Установлено три уровня содержания их в почве:

 А – фоновые концентрации;

В – концентрации, указывающие на необходимость проведения дополнительных исследований и мероприятий;

С – пороговые концентрации, свидетельствующие о необходимости проведения срочных мер по очистке почв.

Характер  вредного   действия   загрязняющих   веществ   чрезвычайно разнообразен. Окись углерода и двуокись азота связывают гемоглобин крови  и при больших концентрациях опасны для жизни. Сернистый ангидрид и  некоторые углеводороды   оказывают  раздражающее  действие  на   слизистую   оболочку дыхательных путей, а сернистый ангидрид, кроме того, губителен  для  многих видов  растений.  Среди  углеводородов  могут  быть  вещества,  наделенными канцерогенными  свойствами  (например,  бензпирен)  или  обладающие  резким неприятным запахом.    Сбрасываемые в естественные водоемы производственные и  хозяйственно- бытовые стоки изменяют количество  и качество воды  в  них,  осложняют  или вовсе  исключают  возможность  использования  водоемов  для  питьевых   или производственно-технических нужд.
Степень  влияния  сточных  вод  на  водоемы  зависит  от   характера
сбрасываемых загрязнителей, их количественных  соотношений.  Сама  по  себе сточная неразведенная вода всегда имеет  выраженный  токсический  эффект  и отрицательно сказывается на здоровье  людей  и  может  послужить   причиной возникновения  различного рода инфекционных заболеваний. Попадая в организм людей  с  питьевой  водой,  многие  ядовитые  металлы  и  их   органические соединения, например  свинец,  мышьяк,  кадмий,  ртуть,  -  содержащиеся  в сточных водах предприятий могут вызвать отравление  людей,  преимущественно хроническое.  Повышенные  концентрации   химических   элементов   оказывают токсическое действие   на водные организмы. Гидробионты   в  той  или  иной мере реагируют на изменение гидрохимического режима водоема, происшедшего в результате спуска  сточных  вод.  Если  тот  или  иной  организм  не  может адаптироваться к новому химическому составу воды и  гибнет,  то  происходит изменение в соотношении между видами в  биоценозах.  Такие  изменения  могут также снизить плодовитость у гидробионтов, уменьшить их жизнеспособность  и явится фактором, ограничивающим развитие и численность  водных  организмов.
Так, кисловатые воды при водородном показателе рН 6,4-5,0  опасны  для  рыб при концентрациях  двуокиси  углерода  выше  20  мг/л   или  при  повышенном содержании солей железа, кислые воды  при рН ниже 5,0 и щелочные  воды  при рН выше 9,5 опасны для рыб всегда, подщелочные воды при рН  8,6-9,5  опасны для рыб при длительном действии.
         Загрязненная химическими веществами вода даже при большом  разбавлении ее чистой нарушает нормальное развитие оплодотворенной икры,  быстро  губит эмбрион (зародыш). Загрязнение водоемов наряду с  факторами  прямой  гибели рыбы причиняет рыбным запасам вред и в другом отношении:  погибает  корм  - мелкие беспозвоночные животные, которые поедают рыбы.
Загрязнение нефтепродуктами  сточных  вод  вызывает  многообразные  и глубокие изменения в составе водных биоценозов и даже во всей фауне и флоре водоемов.  Это  обусловлено  физико-химическими  свойствами  самой   нефти, которая весьма сложна по своему составу и может отдавать в воду вещества  в различных агрегатных состояниях: твердом, жидком,  газообразном.  Часть  ее компонентов оседает на дно, часть находится в виде суспензий и  эмульсий  в толще воды. а часть - в молекулярно растворенном состоянии.
Таким образом, все существующие виды  загрязнений  какие  бы  они  не были, оставляют свой отпечаток на состоянии здоровья человека, животных, на развитии организмов и этим подчеркивают опасность загрязнения.  

Предельно допустимые концентрации в продуктах питания (мг/кг)

Крупа

Зерно

Мука

Крахмал

Овощи св.

Овощи

 конс.

Хром

0,2

0,2

0,2

0,2

0,2

0,2

Никель

0,5

0,5

0,5

0,5

0,5

0,5

Медь

10

10

10

-

5

5

Цинк

50

50

50

30

10

10

Кадмий

0,1

0,03

0,1

-

0,03

0,03

Олово

-

-

-

-

-

200

Ртуть

0,03

0,03

0,02

0,02

0,02

0,02

Свинец

0,3

0,3

0,3

-

0,5

0,5

Сурьма

0,1

0,1

0,1

0,1

0,3

0,3

Фрукты

св.

Фрукты

конс.

Ягоды

 св.

Ягоды

 конс.

Грибы

св.

Хлеб

Хром

0,2

0,2

-

-

-

0,2

Никель

0,5

0,5

0,5

0,5

0,5

-

Медь

5

5

5

5

-

10

Цинк

10

10

10

10

-

50

Кадмий

0,03

0,03

0,03

0,03

-

-

Олово

-

200

-

200

-

-

Ртуть

0,02

0,02

0,02

0,02

0,05

0,02

Свинец

0,4

0,4

0,4

0,4

0,5

0,3

Сурьма

0,3

0,3

0,3

0,3

-

0,1

3   Токсичность тяжелых металлов в организме человека.
Токсичность – это мера несовместимости вредного вещества с жизнью. Степень токсического эффекта зависит от биологических особенностей пола, возраста и индивидуальной чувствительности организма; строения и физико-химических свойств яда; количества попавшего в организм вещества; факторов внешней среды (температура, атмосферное давление).
 Среди ксенобиотиков важное место занимают тяжелые металлы и их соли, которые в больших количествах выбрасываются в окружающую среду. К ним относятся известные токсичные микроэлементы (свинец, кадмий, хром, ртуть, алюминий и др.) и эссенциальные микроэлементы (железо, цинк, медь, марганец и др.), также имеющие свой токсический диапазон.
Основным путем поступления тяжелых металлов в организм является желудочно-кишечный тракт, который наиболее уязвим к действию техногенных экотоксикантов.
Спектр экологических воздействий на молекулярном, тканевом, клеточном и системном уровнях во многом зависит от концентрации и длительности экспозиции токсического вещества, комбинации его с другими факторами, предшествующего состояния здоровья человека и его иммунологической реактивности. Большое значение имеет генетически обусловленная чувствительность к влиянию тех или иных ксенобиотиков. Несмотря на разнообразие вредных веществ, существуют единые механизмы их воздействия на организм, как у взрослого человека, так и у ребенка.
Отравления соединениями тяжелых металлов известны с древних времен. Упоминание об отравлениях «живым серебром» (сулема) встречается в IV веке. В середине века сулема и мышьяк были наиболее распространенными неорганическими ядами, которые использовались с криминальной целью в политической борьбе и в быту. Отравления соединениями тяжелых металлов часто встречались в нашей стране: в 1924-1925 гг. Было зарегистрировано 963 смертельных исхода от отравлений сулемой. Отравления соединениями меди преобладают в районах садоводства и виноделия, где для борьбы с вредителями используется медный купорос. В последние годы наиболее распространены отравления ртутью. Нередки случаи массовых отравлений, например, гранозаном после употребления семян подсолнечника, обработанного этим средством.

    Элементы ПДК в продуктах, мг/кг в сутки

Pb

Be

Ag

Hg

Рыбных

30-300

10-50

5-10

1-3

Мясных

1

-

-

0.3-0.6

Молочных

0.5

-

-

0.03

Токсичность тяжелых металлов в организме человека
По опасности для здоровья человека тяжелые металлы делятся на следующие классы:
1 класс (самый опасный): Cd, Hg, Se, Pb, Zn
2 класс: Co, Ni, Cu, Mo, Sb, Cr

3 класс: Ba, V, W, Mn, Sr
          Тяжелые металлы и их соединения могут поступать в организм человека через легкие, слизистые оболочки, кожу и желудочно-кишечный тракт. Механизмы и скорость проникновения их через разные биологические барьеры и среды зависят от физико-химических свойств указанных веществ, химического состава и условий внутренней среды организма. В результате взаимопревращений между поступившими в организм металлами или их соединениями и химическими веществами различных тканей и органов могут образоваться новые соединения металлов, обладающие иными свойствами и по-другому ведущие себя в организме. При этом в разных органах, вследствие особенностей обмена, состава и условий среды, пути превращения исходных соединений металлов могут быть различными. Отдельные металлы могут избирательно накапливаться в определенных органах и длительно задерживаться в них. В результате накопление металла в том или ином органе может быть или первичным, или вторичным.
На примере отдельных металлов рассмотрим пути их поступления в организм через желудочно-кишечный тракт (ЖКТ) с продуктами питания (животного и растительного происхождения), а также токсическое действие.

 Мутагенное действие металлов.
         
Под мутагенным действием химических веществ следует понимать изменение наследственных свойств организма, проявляющихся у потомства.
Мутационный процесс под влиянием химических веществ можно разделить на две большие группы: мутагенез в зародышевых клетках и мутагенез в соматических клетках. Мутации под влиянием химических веществ могут возникать на всех трех уровнях организации наследственных структур: генном, хромосомном и геномном.

 В отношении скорости сорбции чистого кобальта, его оксидов и солей в ЖКТ сведения разноречивы. В одних исследованиях отмечено слабое всасывание (11…30%) даже хорошо растворимых солей кобальта, в других указано на высокую сорбцию солей кобальта в тонком кишечнике (до 97%) в связи с хорошей их растворимостью в нейтральной и щелочной средах. На уровень сорбции влияет также величина дозы, поступившей перорально: при малых дозах сорбция больше, чем при больших. Ni (II) преобладает в биологических средах, образуя разные комплексы с химическими компонентами последних. Металлический никель и его оксиды из ЖКТ всасываются медленнее, чем его растворимые соли. Поступивший с водой никель абсорбируется легче, чем входящий в виде комплексов в состав пищи. В целом количество всосавшегося из ЖКТ никеля составляет 3…10%. В его транспорте участвуют те же белки, которые связывают железо и кобальт.
Цинк, также относящийся к d-элементам и имеющий состояние окисления +2, является сильным восстановителем. Соли цинка хорошо растворимы в воде. При их поступлении наблюдается задержка на некоторое время с последующим постепенным попаданием в кровь и распределением в организме. Цинк может вызывать «цинковую» (литейную) лихорадку. Абсорбция цинка из ЖКТ достигает 50% от введенной дозы. На уровень абсорбции оказывает влияние количество цинка в пище и ее химический состав. Пониженный уровень цинка в пище способствует увеличению абсорбции этого металла до 80% от введенной дозы. Увеличению абсорбции цинка из ЖКТ способствуют белковая диета, пептиды и некоторые аминокислоты, которые, вероятно, образуют хелатные комплексы с металлом, а также этилендиаминтетраацетатом. Высокое содержание фосфора и меди в пище снижает абсорбцию цинка. Наиболее активно цинк всасывается в двенадцатиперстной кишке и верхней части тонкого кишечника.
Ртуть (d-элемент) – единственный металл, который находится в обычных условиях в виде жидкости и интенсивно выделяет пары. Может находиться в состояниях окисления +1 и +2 (в последнем встречается чаще) и в виде не только неорганических соединений, но и органических производных двухвалентной ртути, в частности таких, как метил-, этил- и пропилртуть, которые оказываются токсичнее и опаснее, чем неорганические соединения, благодаря своей более высокой проницаемости через биологические барьеры и тропности к тканевым субстратам и структурам. Из неорганических соединений ртути наиболее опасны металлическая ртуть, выделяющая пары, и хорошо растворимые соли Hg(II), образующие ионы ртути, действием которых и определяется токсичность. Соединения двухвалентной ртути токсичнее, чем одновалентной. Выраженная токсичность ртути и ее соединений, отсутствие данных о сколько-нибудь заметных положительных физиологических и биохимических эффектах указанного микроэлемента заставляли исследователей относить его не только к биологически ненужным, но и опасным даже в ничтожных количествах из-за его широкой распространенности в природе. В последние десятилетия, однако, появляется все больше свидетельств и мнений о жизненно важной роли ртути. Надо отметить, что ртуть – один из самых токсичных металлов, она постоянно присутствует в природной среде (почве, воде, растениях), может в избытке поступать в организм человека через ЖКТ вместе с пищей и водой. Неорганические соединения ртути слабо всасываются в ЖКТ, в то время как органические, например метилртуть, абсорбируются почти полностью.
Таллий (р-элемент), хотя и редкий элемент, но в связи с широким применением в электронной, химической промышленности и сельском хозяйстве в качестве функциональных и зооцидных препаратов может в значительной степени загрязнять окружающую среду. Попадая в ЖКТ, растворимые соли таллия очень быстро проникают в кровь и разносятся в органы и ткани, нерастворимые – практически не всасываются при пероральном пути поступления.
Олово (р-элемент) может в заметных количествах поступать через ЖКТ при употреблении пищи, особенно соков, в случае хранения в посуде, содержащей олово в составе сплавов, из которых она изготовлена. Нерастворимые соединения олова почти не всасываются в ЖКТ, но и растворимые соединения абсорбируются очень слабо и преимущественно в виде соединений с белками. При этом соли двухвалентного олова всасываются легче и в больших количествах по сравнению с четырехвалентным оловом. Свинец, относящийся, как и олово, к p-элементам и являющийся в современную эпоху одним из наиболее распространенных металлозагрязнителей окружающей среды и, прежде всего, воздуха, к сожалению, в значительных количествах может поступать в организмчеловека ингаляционным путем. Свинец в виде нерастворимых соединений (сульфидов, сульфатов, хроматов) плохо всасывается из ЖКТ. Сурьму относят к тяжелым металлам с очень низкой сорбцией из ЖКТ.  Поступая в организм человека, тяжелые металлы с током крови разносятся в разные органы и ткани. Характер их распределения и степень накопления зависят от сродства к различным структурам и биохимическим компонентам тканей и органов, прочности образуемых комплексов и скорости их элиминации.

Ванадий, как один из наиболее легких среди тяжелых металлов, весьма активный в химическом отношении (сильный окислитель имеет сродство к фосфатам, жирам и т.д.) относительно быстро обменивается в организме. При любом пути поступления ванадий вскоре появляется в крови, где соединяется с трансферрином, транспортируется в разные органы и ткани, и в первые же часы его обнаруживают в моче.

Никель в крови находится в виде комплексов с низко молекулярными соединения, в частности с аминокислотами, в основном с гистидином, альбумином, а также со специфическим белком, названным никелеплазмином, относящимся к макроглобулиновой фракции. Из крови никель проникает в ткани при участии металлотионеинов. наиболее распространенным металлом в организме является Ni(II).
В организме человека никель входит в состав некоторых ферментов. Его обнаруживают постоянно в рибонуклеиновой кислоте (РНК), что может быть связано с онкогенностью никеля. Около 50% никеля откладывается во внутренних органах и крови, 30% - в мышцах и жировой ткани, 15% - в костях и соединительной ткани.
При избыточном поступлении меди в организм в связи с ее высокой биохимической активностью происходят серьезные нарушения в обмене веществ, проявляющиеся в токсических эффектах. Существуют конкуренция и негативное влияние цинка, марганца, никеля на обмен меди.
Неорганическая ртуть в крови приблизительно одинаково распределяется между эритроцитами и плазмой в крови, но органические соединения превалируют в эритроцитах. В частности, концентрация метилртути в эритроцитах в 10 раз превышает ее в плазме. Распределение ртути в органах и тканях зависит от пути поступления и формы соединения ртути, но в целом больше ртути накапливается в почках.
Таллий частично связывается альбумином и другими белками крови, но преимущественно находится в виде свободных ионов. Из крови он распределяется в различные органы и ткани. После перорального поступления таллий обнаруживают преимущественно в ЖКТ и печени, костном и головном мозге, легких, надпочечниках, селезенке, почках, мышцах и волосах. Длительность сохранения в тканях невелика, период полувыведения составляет 3…4 суток.         

Радиоактивное загрязнение продовольственного

сырья и пищевых продуктов

Путем анализа радиоактивного фона оцениваются возможные пути нагруз­ки на человека, загрязнения пищевых продуктов радиоактивными веществами, определяются меры профилактики.

Считают, что радиационный фон Земли складывается из трех компонентов:

              - космическое излучение;

              - естественные радионуклиды, содержащиеся в земле, воде, воздухе, других объектах окружающей среды;

              - искусственные радионуклиды, образовавшиеся в результате человечес­кой деятельности (например, при ядерных испытаниях); радиоактивные отходы,
отдельные радиоактивные вещества, используемые в медицине, технике, сельском хозяйстве.

Естественные радионуклиды. К ним относятся указанные выше космогенные радионуклиды, главным образом 3Н, 7Ве, |4С, 22Na, 24Na и радионуклиды, присутствующие в объектах окружающей среды с момента образования Земли (включая их дочерние продукты распада). Основным источником облучения человека и загрязнения пищевых продуктов являются 40К, 238U, 232Th - радио­нуклиды земного происхождения.

В настоящее время накоплен большой материал о содержании естествен­ных радионуклидов в объектах окружающей среды, включая организм человека,

продовольственное сырье и пищевые продукты. Естественный радиационный фон постоянно изменяется вследствие неугомонной деятельности человека, распространения технологий переработки природных продуктов, содержащих радионуклиды.

Искусственные радионуклиды. Испытание ядерного оружия - один из самых опасных источников радиоактивного загрязнения окружающей среды. Образующиеся при делении радионуклиды проникают в организм человека через вдыхание зараженного воздуха, употребление в пищу загрязненных про­дуктов, в результате человек подвергается внутреннему облучению; через воздействие на кожу радиоактивных веществ, находящихся в воздухе и на поверхности Земли, - внешнему облучению.

Научный комитет ООН по действию атомной радиации определяет 21 наиболее распространенный радионуклид, 8 из которых составляют основную дозу Внутреннего облучения населения: углерод-14 (14С); цезий-137 (137Cs); стронций-90 (90Sr); рутений-106 (106Ru); церий-144 (144Се); водород-3 (3Н); йод-131 (I3IJ); (95Zr). Доза внешнего облучения формируется в основном за  счет радионуклидов: 95Zr, его дочернего радионуклида 95Nb, l06Ru, IO3Ru, 140Ba, 137Cs.

В последнее время становится актуальной проблема радона, который образуется при естественном радиоактивном распаде радия. Радиоактивность радона в наружном воздухе обычно составляет 1-20, достигая в горных районах до 60 Бк/м и более, в воздухе жилых помещений порядка 50, в отдельных случаях до нескольких тысяч беккерелей на 1 м3.

Таблица  Природные источники ионизирующего излучения

Источники

Средняя годовая доза

Вклад в дозу,

%

бэр

Зв

Космос (излучение на уровне моря)

30

0,30

15,1

Земля (грунт, вода, строительные материалы)

50-130

0,5-1,3

68,8

Радиоактивные элементы, содержащиеся в тканях человека (40К, 14С и др.)

30

0,30

15,1

Другие источники

2

0,02

1,0

Итого

200,0

2,0

-

Показано, что у населения, проживающего на территориях, прилегающих к указанным предприятиям, возможно повышение поступления радионуклидов с рационом. Основной вклад в суммарное поступление осуществляется за счет овощной продукции (капусты и картофеля). Для воды водоемов-охладителей определены контрольные концентрации радионуклидов, содержание которых необходимо регламентировать в целях обеспечения радиационной безопасности жидких сбросов и предотвращения загрязнения продуктов питания.

Авария на Чернобыльской АЭС показывает интенсивную биогенную миграцию радионуклидов цезия и стронция, которая обусловливает высокие уровни поступления их в организм человека (о допустимых уровнях см. табл. 42). При этом важно отметить, что в продуктах животноводства радионуклидов содержится на 2—4 порядка меньше, чем в продукции растениеводства, т. е. если популяционную дозу при потреблении молока принять за 1, то коллек­тивная доза при потреблении овощей и корнеплодов составит 1000. Это опре­деляет поиск профилактических путей снижения облучения за счет целевой оптимизации структуры сельскохозяйственного производства.

За всю свою жизнь человек получает дозу облучения от природных источ­ников на уровне 250-400 мбэр, что является обычным при нормальном состоя­нии среды обитания. Облучение в 10 рад не вызывает каких-либо изменений в органах и тканях человека. Незначительные изменения в составе крови наблюдаются при однократных дозах 25-75 рад, лучевая болезнь - при облучении более 100 рад.

Попадая в организм человека, радиоактивные элементы распределяются в органах, тканях и в неодинаковой степени выводятся из организма.

Важный фактор предотвращения накопления радионуклидов в организме людей, работающих или проживающих на территориях, загрязненных аварийными выбросами, - это употребление определенных пищевых продуктов и их отдельных компонентов. Особенно это касается защиты организма от долгоживущих радионуклидов (например стронций-90), которые способны мигрировать по пищевым цепям, накапливаться в органах и тканях, подвергать хроническому облучению костный мозг и костную ткань, повышая риск развития злокачест­венных новообразований. Установлено, что обогащение рациона рыбной мас­сой, кальцием, костной мукой, фтором, ламинарией способствует уменьшению риска возникновения онкологических заболеваний. Больший интерес в рассматриваемом вопросе представляют неусвояемые углеводы, которые применяют для обогащения пищевых продуктов лечебно-профилактического назна­чения. Немаловажное значение в профилактике радиоактивного воздействия имеет /3-каротин и пищевые продукты с высоким содержанием этого про­витамина.


Полимерные материалы, контактирующие с продуктами питания, должны обладать необходимыми эксплуатационными свойствами и соответствовать гигиеническим требованиям. Эксплуатационные свойства (химическая стойкость, проницаемость и т. д.) зависят от назначения пищевого продукта, условий эксплуатации упаковки или оборудования. Гигиенические требования разрабатываются и утверждаются органами Госсанэпиднадзора в результате токсиколо­гических и других специальных исследований.

Использование полимерных и других материалов в качестве упаковки направлено на решение следующих задач:

Рекомендуем посмотреть лекцию "4 Концепция типа для данных".

обеспечение возможности расфасовки и транспортировки продуктов;

защита от воздействия окружающей среды, болезнетворных и вредных микроорганизмов;

сохранение питательной ценности продукта;

увеличение срока его годности и т. д.

При этом материалы не должны изменять органолептических свойств продукта и, как это было сказано выше, выделять химические вещества, оказывающие в определенных количествах вредное воздействие на организм чело­века. Добавки и низкомолекулярные примеси химически не связаны с поли­мером, поэтому, при определенных условиях, они легко переходят в продукты питания и могут неблагоприятно влиять на здоровье человека. В рецептуру полимерного или другого материала не должны входить вещества, обладающие токсичностью. Список таких веществ определяется службой Госсанэпиднадзора.

Добавки подразделяются на допустимые и недопустимые в зависимости от биологической активности, степени миграции из полимерных материалов, опасности вредного влияния на организм. Использование добавок регламентируется гигиеническими нормативами, определенными в токсикологическом эксперименте. Такими нормативами являются: ДКМ -допустимое количество миграции, ДМ - максимально допустимая суточная доза.

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5259
Авторов
на СтудИзбе
421
Средний доход
с одного платного файла
Обучение Подробнее