Главная » Все файлы » Просмотр файлов из архивов » Документы » Лазерная микросварка в электронике

Лазерная микросварка в электронике (журналы и методы по фхомнту для всех 8ми семинаров также лекций чутка)

2021-01-15СтудИзба

Описание файла

Файл "Лазерная микросварка в электронике" внутри архива находится в папке "Семинар 5 Лазерная сварка". Документ из архива "журналы и методы по фхомнту для всех 8ми семинаров также лекций чутка", который расположен в категории "". Всё это находится в предмете "формирование вакуумной среды и измерение её параметров (фхомнт)" из 3 семестр, которые можно найти в файловом архиве МГТУ им. Н.Э.Баумана. Не смотря на прямую связь этого архива с МГТУ им. Н.Э.Баумана, его также можно найти и в других разделах. .

Онлайн просмотр документа "Лазерная микросварка в электронике"

Текст из документа "Лазерная микросварка в электронике"

Лазерная микросварка в электронике

Лазерной сваркой называется технологический процесс получения неразъемного соединения частей изделия путем местного расплавления металлов по примыкающим поверхностям. Источником нагрева (при расплавлении) служит сконцентрированный поток излучения оптического квантового генератора (лазера). В результате плавления и кристаллизации возникает прочное сцепление (сварной шов), основанное на межатомном взаимодействии свариваемых деталей.

Лазерная микросварка открывает перспективы создания микроэлектронных приборов нового поколения, материалов и покрытий, обладающих повышенными трибологическими свойствами. Для пользователя решающее значение имеет скорость производственного процесса, для исследователя – повышение технологической прочности. Часто решения этих двух задач взаимно противоположны друг другу. Индивидуальный подбор режимов позволит сделать оптимальный выбор. Тенденции к уменьшению размеров, массы изделий современных микроэлектронных устройств и повышение требований к качеству продукции приводят к новым решениям. Техническая сборка микро- и наносистем базируется на эффектах, возникающих при синтезе материалов методами лазерного воздействия [1]. Причем современный инструментарий позволяет прецизионно воздействовать на объекты. Лазерные и оптические технологии селективно воздействуют на материалы, используя особенности их энергетических спектров. Это расширяет возможности создания материалов и покрытий с заданными функциональными свойствами.

Принцип работы лазера

В физической основе работы лазера лежит явление вынужденного, или индуцированного, излучения. В чём же его суть? Какое излучение называют вынужденным?

В стабильном состоянии атом вещества имеют наименьшую энергию. Такое состояние считается основным, а все другие состояния - возбуждёнными. Если сравнить энергию этих состояний, то в возбуждённом состоянии она избыточна по сравнению с основным. При самопроизвольном переходе атома из возбуждённого состояния в стабильное атом испускает фотон. Такое электромагнитное излучение называется спонтанным излучением.

Если же переход из возбуждённого состояния в стабильное происходит принудительно под воздействием внешнего (индуцирующего) фотона, то образуется новый фотон, энергия которого равна разности энергий уровней перехода. Такое излучение называется вынужденным.

Новый фотон является «точной копией» фотона, вызвавшего излучение. Он имеет такую же энергию, частоту и фазу. При этом он не поглощается атомом. В результате фотонов становится уже два. Воздействуя на другие атомы, они вызывают дальнейшее появление новых фотонов.

Новый фотон излучается атомом под воздействием индуцирующего фотона, когда атом находится в возбуждённом состоянии. Атом, находящийся в невозбуждённом состоянии, просто поглотит индуцирующий фотон. Поэтому, чтобы свет усиливался, необходимо, чтобы возбуждённых атомов было больше, чем невозбуждённых. Такое состояние называется инверсией населённости.

Как устроен лазер

Упрощенная конструкция лазера представлена на рис.1

Рис.1. Схема лазера

В конструкцию лазера входят 3 элемента:

1.Источник энергии, который называют механизмом «накачки» лазера.

2.Рабочее тело лазера.

3.Система зеркал, или оптический резонатор.

Источники энергии, применяемые для накачки могут быть разными: электрические, тепловые, химические, световые и др. Их задача - «накачать» энергией рабочее тело лазера, чтобы вызвать в нём генерацию светового лазерного потока. Источник энергии называют механизмом «накачки» лазера. Им могут быть химическая реакция, другой лазер, импульсная лампа, электрический разрядник и др.

Рабочим телом, или лазерными материалами, называют вещества, выполняющие функции активной среды. Собственно в рабочем теле и зарождается лазерный луч. Как же это происходит?

В самом начале процесса рабочее тело находится в состоянии термодинамического равновесия, а большинство атомов - в нормальном состоянии. Для того чтобы вызвать излучение, необходимо подействовать на атомы, чтобы система перешла в состояние инверсии населённости. Эту задачу и выполняет механизм накачки лазера. После того, как бальшинство атомов рабочего тела перешло в инверсное состояние, один из возбужденных электронов атома переходит на нижнюю орбиту с излучением фотона. Как только новый фотон появится в одном атоме, он запустит процесс образования фотонов в других атомах. Этот процесс вскоре станет лавинообразным. Все образующиеся фотоны будут иметь одинаковую частоту, а световые волны сформируют монохроматический световой луч огромной мощности.

В качестве активных сред в лазерах используют твёрдые, жидкие, газообразные и плазменные вещества. Например, в первом лазере, созданном в 1960 г., активной средой был рубин.

Рабочее тело помещается в оптический резонатор. Самый простой из них состоит из двух параллельных зеркал, одно из которых полупрозрачное. Часть света оно отражает, а часть пропускает. Отражаясь от зеркал, пучок света возвращается обратно и усиливается. Это процесс повторяется многократно. На выходе из лазера образуется очень мощная световая волна.

Оборудование для лазерной обработки вообще и для сварки в частности включает в себя следующие основные элементы:

1) технологический лазер;

2) систему отклонения и фокусировки луча;

3) систему наблюдения;

4) оснастку для крепления и перемещения детали;

5) средства контроля за параметрами процесса.

В
се эти элементы входят в состав лазерной технологической установки (рис. 2).

Рис. 2. Структурная схема лазерной технологической установки:

1 — технологический лазер; 2 — лазерное излучение; 3 — оптическая система; 4 — обрабатываемая деталь; 5 — устройство для закрепления и перемещения детали; 6 — датчики параметров технологического процесса; 7 — программное устройство; 8 — датчики параметров излучения.

Основным элементом оборудования является технологический лазер, отличающийся надежностью и простотой эксплуатации в жестких условиях производства, а также имеющий высокий ресурс работы и воспроизводимость параметров излучения. Выбор типа лазера для осуществления той или иной сварочной операции должен осуществляться с учетом следующих положений и рекомендаций:

1) на основании чертежа детали и технического задания на ее изготовление определить технологические операции, при выполнении которых потребуется лазер;

2) установить требуемую глубину проплавления и ширину шва; учесть при этом состав свариваемого материала;

3) оценить масштабы производства, его тип и требуемую производительность;

4) определить возможности предприятия по затратам на приобретение и эксплуатацию того или иного типа лазера;

5) рассчитать экономическую эффективность от применения лазерной сварки;

оценить возможности предприятия по площадям, культуре производства и подготовленности кадров.

Отклоняющие системы служат для изменения направления луча от источника до детали. При проектировании или выборе этих систем необходимо учитывать следующие положения и требования.

1. Взаимное расположение детали и источника излучения необходимо проектировать с таким расчетом, что бы расстояние между ними было минимально возможным. Также необходимо сводить к минимуму количество отклоняющих элементов. При соблюдении этого условия достигается снижение потерь излучения на отражение и рассеивание.

2. Для изменения направления излучения с длиной волны, лежащей в видимой или ближней инфракрасной части спектра, используют призмы полного внутреннего отражения и интерференционные зеркала с многослойными диэлектрическими покрытиями. Такие системы применимы в основном для твердотельных технологических лазеров с длиной волны 1,06 мкм и невысокой мощностью излучения.

3. В системах с мощными газовыми лазерами с длиной волны излучения 10,6 мкм применяют металлические, преимущественно медные зеркала. При использовании лазеров с рабочим телом на СО2 мощностью до 200 Вт возможно применение стеклянных зеркал с покрытиями из золота или алюминия.

4. При выборе или конструировании отклоняющих систем необходимо учитывать возможность их нагрева вследствие поглощения излучения. При относительно небольших мощностях излучения, особенно в непрерывном режиме работы лазера, это может привести к термическим деформациям оптических деталей, к изменению их оптической силы и, следовательно, к изменению параметров сфокусированного пучка, а также к увеличению аберраций. Фокусирующая система служит для создания необходимой плотности мощности на поверхности детали. Система наблюдения служит для наблюдения, контроля и наведения излучения на обрабатываемую точку.

Существуют две основные схемы систем наблюдения:

1. Система наблюдения соосна с фокусирующей системой.

2. Система наблюдения расположена под углом к фокусирующей системе. Соосная система выполняется путем соответствующей установки отклоняющих зеркал и призм, полупрозрачных зеркал или зеркал с отверстиями. Такая схема применена в системе наблюдения СОК-2, которой оснащены установки серий КВАНТ. Для точного наведения луча на место сварки в оптических системах с совмещенными фокусирующими объективами и микроскопом применяется сетка с перекрестием, обеспечивающим максимальную точность наведения. Соосные системы наблюдения применяются преимущественно для лазеров с длиной волны излучения в ближней инфракрасной области. Помимо рассмотренных функций оптическая система может обеспечивать перемещение; расщепление; сканирование и модуляцию луча.

В большинстве случаев относительное перемещение детали и источника нагрева осуществляется за счет движения детали. Однако в случае высоких скоростей сварки и увеличенных габаритов деталей удобнее использовать систему перемещения луча. Это позволяет уменьшить массу подвижных узлов, что облегчает управление их перемещением, способствует повышению точности обработки. Перемещение луча достигается следующими методами (рис. 3, а, б, б).

Рис. 3. Схема перемещения луча при неподвижной детали:

а — перемещение отклоняющего зеркала вдоль детали; б — колебания отклоняющего зеркала; в — круговое вращение системы зеркал

1. Использование системы подвижных зеркал, перемещаемых по соответствующим координатам.

2. При небольших перемещениях используют изменение угла наклона зеркала по отношению к оптической оси.

3. Для обеспечения кругового перемещения применяют систему вращения зеркала вместе с объективом. Если радиус окружности не превышает радиуса поля зрения объектива, то круговую траекторию движения фокального пятна можно получить путем смещения объектива и его вращения относительно оси луча.

Лазерная сварка в отличие от электронно-лучевой не требует вакуумных камер. Процесс лазерной сварки осуществляется в атмосфере воздуха либо в среде защитных нейтральных газов (Аг, Не), в среде углекислого газа (СО2) и др. (когда в этом есть необходимость). Поэтому создается возможность использования лазерной сварки для соединения элементов конструкций любых габаритов.

Особенностью лазерного излучения является возможность легкой его транспортировки. С помощью зеркальных оптических систем лазерный луч можно направлять в труднодоступные места, подавать на значительные расстояния без потерь энергии, одновременно или последовательно использовать на нескольких рабочих участках. Эти характерные особенности лазерного излучения создают возможность легкого и оперативного управления процессом лазерной сварки. К этому следует добавить простоту управления энергетическими характеристиками лазерного излучения. В отличие от электронного луча, дуги и плазмы на лазерный луч не влияют магнитные поля свариваемых деталей и технологической оснастки, что позволяет получать устойчивое качественное формирование сварного шва по всей длине. Для сварки металлов используются твердотельные и газовые лазеры. Различают технологические лазеры импульсно-периодического и непрерывного действия. Из твердотельных лазеров для сварки применяют лазеры на рубине (в качестве твердого активного элемента в нем использованы стержни из кристалла искусственного рубина). Эти лазеры генерируют обычно импульсно-периодическое излучение на длине волны = 0,69 мкм с длительностью импульсов 10-3... 10-9 с, Более высокими значениями мощности отличаются твердотельные лазеры с активным элементом в виде стержней из стекла с примесью неодима. Эти лазеры способны генерировать большую энергию в десятки джоулей. Большими технологическими возможностями отличаются твердотельные лазеры с активным элементом из иттрий-алюминиевого граната с добавкой неодима. Эти лазеры могут генерировать излучение не только в импульсно-периодическом, но и в непрерывном режиме на длине волны излучения = 1,06 мкм.

Большую перспективу для лазерной сварки представляют газовые лазеры, в которых в качестве активной среды используется диоксид углерода СO2. Эти лазеры способны развивать в настоящее время среднюю мощность от нескольких сотен ватт до десятков киловатт в непрерывном и импульсно-периодическом режимах генерации излучения с длиной волны = 10,6 мкм. В этих лазерах достигается достаточно высокий КПД преобразования электрической энергии в энергию излучения (10...20% и более). Лазерное излучение является когерентным, монохроматичным, обеспечивающим малую расходимость и, следовательно, имеет возможность высокой степени фокусировки для достижения больших значений концентрации энергии излучения. Благодаря этому на поверхности материала, обрабатываемого сфокусированным лазерным излучением, происходит локальный нагрев. При этом обеспечиваются высокие скорости нагрева и охлаждения, существенно превосходящие эти параметры при тради-ционных методах теплового воздействия, малый объем расплавленного металла, весьма незначительные размеры околошовной зоны термического влияния. Эти особенности теплового воздействия предопределяют специфику физико-химических и металлургических процессов в металлах при лазерной сварке и характерные свойства полученных сварных соединений.

ТЕПЛОФИЗИЧЕСКИЕ ПОКАЗАТЕЛИ ЛАЗЕРНОЙ СВАРКИ

Распространение теплоты при лазерной сварке подчиняется законам теплопроводности. Для возможности анализа тепловых процессов на основе теории теплопроводности в первую очередь необходимо соответствующим образом задать тепловой источник в месте воздействия лазерного излучения. Это можно выполнить с учетом специфических особенностей взаимодействия лазерного излучения с металлами при сварке.

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5259
Авторов
на СтудИзбе
421
Средний доход
с одного платного файла
Обучение Подробнее