Шпоры (Шпаргалки по биофизике), страница 3

2017-06-07СтудИзба

Описание файла

Файл "Шпоры" внутри архива находится в папке "Шпаргалки по биофизике". Документ из архива "Шпаргалки по биофизике", который расположен в категории "". Всё это находится в предмете "биофизика" из 11 семестр (3 семестр магистратуры), которые можно найти в файловом архиве МАИ. Не смотря на прямую связь этого архива с МАИ, его также можно найти и в других разделах. Архив можно найти в разделе "к экзамену/зачёту", в предмете "биофизика" в общих файлах.

Онлайн просмотр документа "Шпоры"

Текст 3 страницы из документа "Шпоры"

Таким образом, сопряжение процессов позволяет прохождению в системе процессов, невозможных в замкнутой системе.

Наиболее типичными сопряжениями процессов в БС являются процессы сопряжения гидролиза АТФ с эндэргоническими процессами, что позволяет этим процессам протекать. Без сопряжения эти процессы были бы невозможны.

19. Скорость продуцирования энтропии вблизи стационарного состояния системы. Теорема Пригожина.

При неизменных внешних условиях в СС, близком к ТД равновесию, скорость прироста энтропии за счёт внутренних необратимых процессов достигает отличного от нуля минимального положительного значения.

т. Пригожина

Пусть в системе имеется два потока: J1≠0 и J2=0, тогда диссипативная функция:

Будем считать фиксированной силу X1=const.

Если система близка к состоянию ТД равновесия, выполняется соотношение Онзагера L12=L21 и

В стационарном состоянии, близком к равновесию, продукция энтропии минимальна. Теорема Пригожина представляет собой критерий эволюции системы к стационарному состоянию и показывает, что вблизи ТД равновесия невозможны колебательные процессы.

20. Общие свойства систем вдали от термодинамического равновесия.

  1. Интенсивные переменные в разных точках системы резко отличаются, поэтому движущие силы и скорости процессов достаточно велики.

  2. Скорости процессов не являются линейными функциями движущих сил, соотношение Онзагера не выполняется.

  3. Скорость продуцирования энтропии не пропорциональна произведению скоростей процессов на движущие силы. По изменениям диссипативной функции нельзя однозначно судить о приближении системы к СС. Теорема Пригожина не выполняется.

  4. Вдали от ТД равновесия возможны неустойчивые СС.

  5. Большую роль в работе системы играют флуктуации.

  6. Эволюция системы может приводить к возникновению упорядоченных структур. Диссипативные структуры.

Флуктуации – это случайные отклонения переменных от их стационарных значений.

Если СС устойчиво, то Ф. не могут вывести систему из этого СС. Если СС неустойчиво, то Ф. приводят к значительным отклонениям системы от СС до перехода этой системы в новое СС. Ф. играют большую роль во временной эволюции системы, особенно вблизи точек бифуркации.

21. Диссипативные структуры: их классификация. Условия возникновения диссипативных структур. Характеристика отдельных видов диссипативных структур.

  • Химические ДС. Возникают в химических неравновесных системах.

Реакции Белоусова-Жоботинского. Характерна временная упорядоченность, возникновение автоколебательных процессов. Это связано с наличием большого числа взаимодействующих веществ, автокаталитических стадий и обратных связей. В случае достаточного объёма системы и при наличии диффузионных процессов образуется пространственная упорядоченность, структуры Тьюринга.

  • Физические ДС.

Неустойчивость Бенара. Образовании гексагональных ячеек в жидкости высокой плотности при наличии градиента температуры и конвекционных потоков. Также к физическим ДС относятся гидродинамические турбулентности, которые также являются неравновесными системами.

  • Биологические ДС.

Все биологические системы являются резко неравновесными и упорядоченными в пространстве и времени. В биологических системах наиболее часто встречаются диссипативные структуры.

Образование пространственных структур в жизненном цикле слизевика: На начальной стадии, при достатке пищи, существуют отдельные миксамёбы. При недостатке питательных веществ отдельные миксамёбы начинают выделять в среду цАМФ, который распространяется в среде посредством диффузии. цАМФ воспринимается другими миксамёбами, и оказывает на них двойной эффект: он вызывает вторичное выделение этими миксамёбами цАМФ, что приводит к усилению сигнала, а также вызывает движение миксамёб по градиенту концентрации в направлении к источнику первичного сигнала. При этом формируется пространственно упорядоченная диссипативная структура – плазмодий.

Чтобы общее изменение энтропии было отрицательным, изменение энтропии за счёт обмена с внешней средой должно быть по модулю больше, чем изменение за счёт внутренних необратимых процессов, и отрицательно. Должен происходить экспорт энтропии во внешнюю среду и поступление свободной энергии в систему.

Экспорт энтропии, превышающий её производство в системе происходит с участием энтропийных насосов. По характеру энтропийных насосов самоорганизующиеся системы делятся на:

  • Пассивные. Когда энтропийный насос находится в окружающей среде и закачивает свободную энергию в систему. Пример: Ячейки Бернара.

  • Активные. Энтропийный насос является частью самой системы. Такая система способна активно, самостоятельно поглощать свободную энергию из окружающей среды. К активным относятся все живые системы.

22. Информация в биологии.

Информация – это величина, понижающая энтропию системы, приводящая к её упорядоченности.

  1. Получение системой И. приводит к снятию неопределённости и возрастанию порядка в системе.

  2. Приём и передача И. связаны с необратимым производством энтропии в системе.

  3. В состоянии ТД равновесия И. системы равна нулю, а энтропия максимальна.

  4. Источником и приёмником И. могут быть только высокоупорядоченные открытые системs/ Такими системами являются, например, все живые системы.

  5. И. существует в сигнально-кодовой форме.

  6. И. инвариантна относительно формы её представления.

  7. Для оперирования И. существуют специализированные информационные структуры: генетическая, гуморальная, нервная и многочисленные экстрасоматические системы.

Для того чтобы система могла использовать информацию должны выполняться некоторые условия:

  1. Система должна быть мультистационарной.

  2. Система должна быть устойчивой. Переключение триггерной системы должно происходить только под действием внешних сил. Это обеспечивает существование феномена памяти. Обусловленные флуктуациями переходы должны происходить крайне редко.

  3. В фазовом пространстве системы должна существовать область, из которой доступны все аттракторы данной системы. Направление перехода должно зависеть только от типа внешнего воздействия.

23. Феномен белка в биофизике. Уникальность строения и свойств белка.

Белки являются биополимерами, состоящими из аминокислотных остатков, соединённых пептидными связями. Они часто имеют нерегулярное строение и сложную пространственную структуру.

Белки способны к взаимному превращению практически любых форм энергии и к использованию энергии для совершения работы. Белки таким образом определяют функциональную активность живых систем.

Белки крайне вариабельны и уникальны. Белки многообразны по своей структуре и выполняемым функциям. В то же время белки, выполняющие одинаковую функцию могут иметь различную структуру, и наоборот.

Белки выполняют свои функции в физиологических, мягких условиях. При их функционировании редко образуются побочные продукты.

Белки образуют сложную пространственную структуру. Она образуется в результате самоорганизации на основе первичной структуры и полностью определяется ею.

Пространственная организация имеет принципиальное значение для реализации свойств белка.

24. Элементарные взаимодействия в белках. Их виды. Ковалентные, координационные связи и силы Ван-дер-Ваальса. Их характеристика.

Элементарные взаимодействия в белках делятся на: Ковалентные связи, Координационные связи, Силы Ван-дер-Ваальса, Водородные связи и Гидрофобные взаимодействия.

  1. Ковалентные связи.

В белках наибольшую роль играют пептидные связи – между соседними АК, и дисульфидные связи – между удалёнными серосодержащими АК одной или разных цепей. Цистеин.

  1. Координационные связи.

Образуются между атомами O, N или S с 2х или 3х валентными ионами металлов, обычно входящих в активный центр белка. При этом образуется хелатное соединение металла с несколькими атомами белка.

  1. Взаимодействия Ван-дер-Ваальса.

Возникают при сближении атомов с полностью заполненными орбиталями. Эти взаимодействия имеют квантовую природу и обусловлены синхронизацией колебаний электронов взаимодействующих атомов.

Взаимодействие проявляется притягиванием на больших расстояниях и отталкиванием на малых расстояниях, при этом атомы располагаются на стабильном расстоянии друг от друга и не могут приближаться друг к другу ближе, чем на 3Ǻ.

Силы Ван-дер-Ваальса также обеспечивают запрет цис-конформации пептидной связи и устойчивость транс-конформации.

25. Элементарные взаимодействия в белках. Водородные связи и гидрофобные взаимодействия. Их характеристика.

Элементарные взаимодействия в белках делятся на: Ковалентные связи, Координационные связи, Силы Ван-дер-Ваальса, Водородные связи и Гидрофобные взаимодействия.

  1. Водородные связи.

Образуются между атомом водорода, ковалентно связанным с электроотрицательным атомом и другим электроотрицательным атомом. Водородная связь имеет электростатическую природу и связана с наличием парциальных зарядов на взаимодействующих атомах. Водородная связь направлена от донора(водород) к акцептору(атому O или N). Водород всегда выступает донором одной водородной связи, кислород может быть акцептором двух водородных связей.

В белках водородные связи образуются между отдельными группами аминокислотных остатков и между полярными АК и молекулами воды.

  1. Гидрофобные взаимодействия.

Возникают между гидрофобными участками АК цепи. Неполярный участок препятствует образованию водородных связей между молекулами воды. Это приводит к уменьшению энтропии в системе и увеличению свободной энергии, так как происходит уменьшение числа степеней свободы у молекул воды, находящихся в контакте с неполярным участком. Далее происходит самопроизвольный процесс сближения гидрофобных участков для уменьшения поверхности их соприкосновения с молекулами воды. Таким образом, гидрофобные взаимодействия обусловлены эволюцией белка к стационарному состоянию с минимальной площадью контакта гидрофобной части с молекулами воды. В белках наиболее гидрофобные остатки образуют "гидрофобное ядро", окружённое гидрофильными остатками.

26. Первичная структура белка. Пептидная связь и её свойства. Пространственная конфигурация полипептидной цепи. Факторы её определяющие. Карты Рамачандрана.

Первичная структура полипептидной цепи представлена последовательностью АК остатков, соединённых пептидными связями. Возможные конфигурации пептидной цепи прежде всего обусловлены плоским строением пептидной связи.

  1. Валентные углы. Порядка 109°.

  2. Двугранные углы поворота вокруг валентной связи

  • ω – Угол внутри пептидной связи, наиболее стабилен и составляет около 179°.

  • φ и ψ углы – Между Cα атомом и C или N пептидной связи.

  • χ – Между Сα атомом и атомом боковой цепи.

В то время как валентные углы и ω угол достаточно постоянны, углы φ и ψ сильно отличаются и зависят от АК остатков, связанных пептидной связью, а также от прочих условий.

Для определения наиболее устойчивых значений этих углов и запрещённых конформаций были получены стерические карты Рамачандрана для разных АК. Расчёт карт Рамачандрана проводился из предположения об атомах, как твёрдых сферах с Ван-дер-ваальсовыми радиусами. Область разрешённых значений углов зависит в большой степени от размера радикала и от соседних АК, также свои ограничения накладывают и другие типы взаимодействий в белке.

27. Вторичная структура белка. Типы вторичной структуры, их особенности. Образование вторичной структуры белка.

  1. α-структура.

Стабилизирована водородными связями между H пептидной группы и карбонильным O отстоящим на 4 АК остатка. В образовании спирали участвуют все пептидные группы. Так как задействуются все водородные связи, спираль приобретает гидрофобные свойства. Вся спираль представляет собой диполь, "+" на N-конце и "–" на C-конце. α-спираль является самой устойчивой вторичной структурой и самой часто встречающейся. Некоторые АК могут нарушать структуру спирали, препятствуя её сворачиванию, это АК с крупными радикалами: пролин, гистидин, триптофан.

  1. β-структура.

В β-структуре водородные связи образуются между параллельно уложенными цепями, при этом образуются слои или листы. Бывают параллельные, антипараллельные и смешанные β-слои. При этом β-слои всегда имеют некоторую скрученность и также являются гидрофобными структурами за счёт полностью задействованных водородных связей.

  1. Спирали без водородных связей.

Такие спирали образуются только за счёт сил Ван-дер-Ваальса. Например, полипролиновая спираль в молекуле коллагена.

  1. Нерегулярная структура.

Часто встречается нерегулярная пространственная структура с чередованием регулярных и нерегулярных участков. Такая структура характерна для большинства функциональных белков.

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5259
Авторов
на СтудИзбе
421
Средний доход
с одного платного файла
Обучение Подробнее