85248 (О раскрытии скобок, об Эйлере, Гауссе, Макдональде и об упущенных возможностях)

2016-08-02СтудИзба

Описание файла

Документ из архива "О раскрытии скобок, об Эйлере, Гауссе, Макдональде и об упущенных возможностях", который расположен в категории "". Всё это находится в предмете "математика" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "остальное", в предмете "математика" в общих файлах.

Онлайн просмотр документа "85248"

Текст из документа "85248"

О раскрытии скобок, об Эйлере, Гауссе, Макдональде и об упущенных возможностях

Д. Фукс

Сколько раз каждому из вас доводилось раскрывать скобки в произведении? Тысячи, а может быть, десятки тысяч? Если и есть в этом занятии что-нибудь привлекательное, так это надежда, что результат умножения, после приведения подобных членов, примет благоприятный вид, как, скажем,

(a + b)(a – b) = a2 – b2,

(1 – a)(1 + a + ... + an ) = 1 – an+1.

Ниже пойдёт речь о подобных равенствах, только гораздо менее очевидных и гораздо более глубоких. Они составляют результат более чем двухсотлетней работы крупнейших математиков мира. Своим читателям я посоветую вооружиться ручкой и бумагой и повторять за мной все выкладки: это поможет не только понять содержание статьи, но и оценить степень нетривиальности её результатов.

1. Тождество Эйлера

В середине XVIII века – дело было в 1748 году или несколькими годами раньше – Леонард Эйлер заинтересовался коэффициентами многочлена

φn(x) = (1 – x)(1 – x2)(1 – x3)...(1 – xn).

Он раскрыл скобки в произведении – и получил поразительный результат. Проделаем эту выкладку и мы:

φ1(x)

= 1 – x ,

φ2(x)

= 1 – x – x2

+ x3

,

φ3(x)

= 1 – x – x2

+ x4

+ x5

– x6

,

φ4(x)

= 1 – x – x2

+ 2x5

– x8

– x9

+ x10

,

φ5(x)

= 1 – x – x2

+ x5

+ x6

+ x7

– x8

– x9

– x10

... ,

φ6(x)

= 1 – x – x2

+ x5

+ 2x7

– x9

– x10

... ,

φ7(x)

= 1 – x – x2

+ x5

+ x7

+ x8

– x10

... ,

φ8(x)

= 1 – x – x2

+ x5

+ x7

+ x9

... ,

φ9(x)

= 1 – x – x2

+ x5

+ x7

+ x10

... ,

φ10(x)

= 1 – x – x2

+ x5

+ x7

... .

Многоточия обозначают части многочленов φn(x), содержащие x в степенях, больших 10 (выписать эти многочлены полностью не позволяет формат журнала: многочлен φ10(x), например, имеет степень 55).

Начнём с очевидного, но важного наблюдения: коэффициенты многочлена φn(x) с ростом n «стабилизируются», то есть каждый из них начиная с некоторого n не меняется. Это легко объяснить: переход от φn–1(x) к φn(x), состоящий в умножении на 1 – xn, не оказывает никакого воздействия на коэффициенты при 1, x, ..., xn–1, так что при n > k коэффициент при xk в многочлене φn(x) от n не зависит. (Например, вычисленная часть многочлена φ10(x) не изменится, если вместо φ10 взять φ11, φ12 и т.д.) Ввиду этого мы можем говорить о «бесконечном произведении»

φ(x) = (1 – x)(1 – x2 )(1 – x3 )(1 – x4 )...,

понимая под этим, конечно, не многочлен, а степенной ряд, то есть выражение вида

a0 + a1x + a2x2 + a3x3 + a4x4 + ...,

где a0, a1, a2, a3, a4... – числа; в нашем случае a0, a1, a2, a3, a4 – стабилизирующиеся коэффициенты. Наше вычисление показывает, что

a0 = a5 = a7 = 1,

a1 = a2 = –1,

a3 = a4 = a6 = a8 = a9 = a10 = 0.

φ(x) называется функцией Эйлера.

Слово «функция» здесь употреблено не случайно: при –1 < x < 1 значения φ(x) можно вычислить (подобно тому, как вычисляют сумму бесконечной геометрической прогрессии).

Теперь – главное. После раскрытия наших скобок очень многое уничтожается, можно сказать – почти всё. Например, результат раскрытия скобок в произведении (1 – x)(1 – x2 )...(1 – x10 ) содержит до приведения подобных 43 слагаемых с x в степенях, меньших или равных 10, в том числе 24 слагаемых с x в степенях 8, 9, 10. После приведения подобных из этих 43 слагаемых остаётся всего 5, в том числе ни одного с x в степенях 8, 9, 10. Более точно, как мы видели, среди коэффициентов a0, a1, a2, ..., a10 три равны 1, два равны –1 и шесть равны 0. Выскажем осторожную гипотезу: коэффициенты ak всегда равны 0, 1 или –1, причём большинство из них равно 0. Дальнейшее вычисление, которое читатель при желании сможет провести сам, не только подтверждает эту гипотезу, но и позволяет её уточнить. Вот, например, часть ряда φ(x), содержащая x в степенях, не превосходящих 100:

φ(x) = 1 – x – x2 + x5 + x7

– x12 – x15 + x22 + x26 –

– x35 – x40 + x51 + x57 – x70 – x77 + x92 + x100...

Надо полагать, что Эйлер, который не боялся длинных выкладок и отменно считал, примерно столько членов ряда φ(x) и вычислил. А потом он просто не мог не заметить, что коэффициенты, отличные от 0, равны 1 или –1, и при этом единицы и минус единицы расположены не как попало, а в строго определённом порядке: две единицы, две минус единицы, две единицы, две минус единицы и т.д. (Мемуар Эйлера на эту тему полностью приведён в книге Д.Пойа «Математика и правдоподобные рассуждения» (М., «Наука», 1975, с.111). Чтение этого мемуара, как и других глав книги Пойа, несомненно, доставит вам большое удовольствие.) В таблице выписаны показатели степеней x, при которых стоят ненулевые коэффициенты.

показатели

1, 2

5, 7

12, 15

22, 26

35, 40

51, 57

70, 77

92, 100

коэффициенты

–1

1

–1

1

–1

1

–1

1

Легко угадать, что это за показатели: в n-м столбце нашей таблицы в верхней строке стоят числа ½(3n2 – n), в нижней – число (–1)n. Если это так при всех n, мы приходим к равенству

(1 – x)(1 – x2)(1 – x3)... = 1 – x – x2 + x5 + x7 – ... +

+ (–1)n x½(3n² – n) + (–1)n x½(3n² + n) + ...

или, пользуясь принятой в математике сокращённой символикой,

(1 – xn) = 1 +

(–1)n ( x½(3n² – n) + x½(3n² + n) ).

n=1

n=1

Это и есть тождество Эйлера. Последующие поколения математиков дали этому тождеству несколько доказательств. Одно из них приводится в п. 3. (Читатель, который больше интересуется фактами, чем доказательствами, без ущерба для понимания дальнейшего может этот параграф пропустить.) А сейчас я расскажу об одном замечательном применении тождества Эйлера, которое украшает все учебники комбинаторики.

2. Тождество Эйлера и число разбиений

Пусть n – натуральное число. Обозначим через p(n) число способов, которыми можно представить n в виде суммы натуральных слагаемых (при этом слагаемые в суммах могут повторяться, и представления, различающиеся лишь порядком слагаемых, считаются одинаковыми). Например:

p(1) = 1;

p(2) = 2

(2 = 2; 2 = 1 + 1);

p(3) = 3

(3 = 3; 3 = 2 + 1; 3 = 1 + 1 + 1);

p(4) = 5

(4; 3 + 1; 2 + 2; 2 + 1 + 1; 1 + 1 + 1 + 1);

p(5) = 7

(5; 4 + 1; 3 + 2; 3 + 1 + 1; 2 + 2 + 1;

2 + 1 + 1 + 1; 1 + 1 + 1 + 1 + 1).

Числа p(n) входят во многие математические формулы, и их полезно уметь вычислять. Но как это сделать? Попробуйте, например, найти p(10). Вам придется изрядно повозиться, и, если повезёт, вы найдете правильный ответ: 42. А если нужно знать, скажем, p(50)? На помощь приходит тождество Эйлера.

Сначала немного «теории». Положим

π(x) = 1 + p(1)x + p(2)x2 + p(3)x3 + ... = 1 + x + 2x2 + 3x3 + 5x4 + 7x5 + ...

Как и φ(x), π(x) – функция, определённая при –1 < x < 1. Но, опять-таки, нас она интересует только как степенной ряд.

Теорема. Ряды φ(x) и π(x), взаимно обратны, то есть

φ(x) · π(x) = 1.

Вы понимаете, в чем смысл этого равенства? Степенные ряды можно перемножать:

(a0 + a1x + a1x2 + ...)(b0 + b1x + b1x2 + ...) = a0b0 + a0b1x + a0b2x2 + ... +

+ a1b0x + a1b1x2 + a1b2x3 + ... + a2b0x2 + a2b1x3 + a2b2x4 + ... +

. . . . . . . . . . . . . . . . . . . . . . .

= a0b0 + (a0b1 + a1b0)x + (a0b2 + 2a1b1 + a2b0)x2 + ...;

наше утверждение означает, что если перемножить таким образом ряды φ(x) и π(x), то полученное произведение сведётся к 1: коэффициенты при x, x2, x3 ... будут равны нулю.

Доказательство.

1

φ(x)

=

1

1 – x

·

1

1 – x2

· ... ·

1

1 – xk

· ... =

= (1 + x + x2 + x3 + ...)(1 + x2 + x4 + x6 + ...)×...×(1 + xk + x2k + x3k + ...)... .

При раскрытии скобок в последнем произведении получится сумма всевозможных выражений вида

a1

2a2

kak

x

x

... x

,

где a1 ..., ak – целые неотрицательные числа. Таким образом, xn войдёт в эту сумму столько раз, сколькими способами n можно представить в виде

a1 + 2a2 + ... + kak.

Но это представление можно переписать так:

1 + ... + 1

+

2 + ... + 2

+ ... +

k + ... + k

.

a1

a2

ak

Мы видим, что представлений числа n в виде a1 + 2a2 + ... + kak столько же, сколько есть его представлений в виде суммы натуральных слагаемых, то есть p(n). Таким образом, коэффициент при xn в нашем произведении равен p(n), то есть 1/φ(x) = π(x). Теорема доказана.

Положив для удобства p(0) = 1, напишем

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5259
Авторов
на СтудИзбе
421
Средний доход
с одного платного файла
Обучение Подробнее