26852-1 (Удивительная мерзлота)

2016-08-02СтудИзба

Описание файла

Документ из архива "Удивительная мерзлота", который расположен в категории "". Всё это находится в предмете "геология" из 2 семестр, которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "рефераты, доклады и презентации", в предмете "геология" в общих файлах.

Онлайн просмотр документа "26852-1"

Текст из документа "26852-1"

Удивительная мерзлота

Давайте обсудим свойства удивительного природного образования - мерзлой породы. Основные компоненты рыхлых отложений - минеральные частички и вода, содержащая растворенные вещества в виде естественных примесей. Ясно, что химический состав компонентов мерзлой породы совпадает с составом исходной талой, из которой она образовалась. Первая неожиданность возникает при анализе физического состояния воды в мерзлой породе. Оказывается, такой грунт не вполне мерзлый: помимо льда в нем (вплоть до очень низких температур ” –70°С) всегда содержится определенное количество незамерзшей воды. Она находится в термодинамическом равновесии с внутригрунтовым льдом и способна течь, как обычная жидкость. Этот факт обнаружен в конце прошлого века шведским ученым П.Холмквистом и имеет фундаментальное значение для понимания очень многих природных явлений, происходящих в мерзлой толще. На первый взгляд, объяснить его можно наличием растворенных солей в поровой жидкости, понижающих температуру ее замерзания. Однако многочисленными исследованиями доказано, что присутствие солей имеет второстепенное значение. Даже в хорошо отмытых и заполненных дистиллированной водой грунтах значительная часть ее остается незамерзшей. Главная причина ее существования - действие особых сил взаимодействия молекул воды с минеральной поверхностью, причем не малую роль играет и кривизна последней [1]. Чем более дисперсна порода, тем более развита ее внутренняя поверхность и тем большее количество незамерзшей воды остается в породе при данной отрицательной температуре. Так, количество воды растет в ряду от песков к глинам. Эти же силы приводят к тому, что грунт остается в талом состоянии при температурах несколько ниже 0°С.

Ледяное древо

Что же может происходить с мерзлой породой, если в ней содержится незамерзшая вода? На рис. 1 приведена фотография ледяного тела - сплошного монокристалла, растущего на поверхности керамического тонкопористого фильтра. Фильтр помещен в стеклянную, заполненную водой U-образную трубку и виден на рисунке, как облачко, под основанием ледяного столбика. (Облачко наверху столбика - снежный комок, использованный как затравка на начальной стадии роста льда.) Верхняя часть фильтра вместе со льдом находятся при отрицательной температуре, а нижняя, соприкасающаяся с водой в трубке, - при положительной.
 

Рис. 1. Ледяной столбик, выращенный на поверхности 
керамического фильтра.

Лед, подобно растению, высасывает воду из резервуара, поднимаясь все выше со скоростью несколько миллиметров в сутки. Можно попробовать воспрепятствовать росту льда, положив сверху гирьку, однако остановить движение не так просто. Оказывается, требуемая нагрузка при понижении температуры увеличивается с коэффициентом 13 атм/град. Для прекращения роста столбика льда с площадью основания 1 см2 при температуре –2°С надо положить 26-килограммовую гирю. Проводились эксперименты, в которых рост льда продолжался при нагрузке, соответствующей давлению 100 атм. Это огромная цифра. Она показывает, что при определенных условиях лед способен, как перышко, поднять любое мыслимое сооружение, нагрузка от которого обычно не превышает нескольких атмосфер. Не надо объяснять, сколь катастрофичными могут быть (и бывают!) последствия. Нагрузка, при которой прекращается рост, называется равновесной, поскольку лед находится в равновесии с водой в резервуаре. Превышение ее вызывает плавление льда и отток жидкости в колено трубки. Очень интересно, что величина нагрузки оказывается примерно в 10 раз ниже той, что необходима для равновесия объемных фаз воды и льда при данной температуре (что отвечает известному коэффициенту 130 атм/град). Это прямое проявление упомянутых поверхностных сил, действующих на контакте льда с минеральной поверхностью.

Вернемся, однако, к фотографии. Чтобы тело льда было прозрачным и не имело внутренних полостей, необходимо поступление воды из резервуара непосредственно к нижней поверхности столбика, контактирующей с фильтром. Но ведь верхняя часть фильтра также мерзлая. Как же происходит подача жидкости? Ответ довольно очевиден: вода поступает по незамерзающим коммуникациям фильтра - жидким пленкам и капиллярам. Однако внимательный читатель обнаружит еще одну загадку: ледяной столбик непрерывно продолжается в порах фильтра, где находится сложная корневая система - внутрипоровый лед. По мере роста столбика его масса перемещается вверх, и легко сообразить, что корневая система также подымается в том же направлении и с той же скоростью. При этом протяженность корневой системы по вертикали не меняется из-за постоянного намерзания льда снизу.

Как же возможно такое сплошное течение льда в порах, если их стенки имеют многочисленные выступы и неровности? Здесь мы сталкиваемся еще с одним удивительным явлением, которое продемонстрировал в конце позапрошлого века английский ученый Дж.Баттомли. Он медленно перерезал массивный блок льда с помощью обычной проволоки, но блок не распадался на куски, а оставался целым. Почему? Лед плавился на передней части проволоки, а оттекающая вода замерзала на ее тыльной стороне. Явление, при котором лед плавится в местах повышенных напряжений и затем замерзает в местах разгрузки, получило название режеляции [2]. Так, например, движутся ледники по каменистому, шероховатому ложу. Именно благодаря этому явлению и происходит перемещение внутрипорового льда через фильтр вслед за ледяным телом. Нетрудно понять, что для перетекания жидкости к тыльной стороне препятствия (например, проволоки) необходимо существование вокруг него пленки незамерзшей воды.

Мы подробно остановились на простом лабораторном эксперименте, чтобы выделить основные элементы и их причинно-следственные связи в данном процессе. Отметим их еще раз: поверхностные силы существенно изменяют условия термодинамического равновесия льда и воды в грунтах в сравнении с условиями, характерными для их объемных фаз. Это приводит к присутствию незамерзшей воды в равновесном состоянии при отрицательных температурах, которая способна течь, как обычная жидкость. В свою очередь становятся возможными процессы миграции влаги и перемещения льда внутри пористой матрицы за счет режеляции. Рост ледяных тел как на поверхности, так и внутри грунта происходит только при наличии этих двух процессов. Насос, вызывающий движение воды в сторону растущего льда, работает исключительно благодаря поверхностным силам, величина которых возрастает в направлении от теплой стороны фильтра к холодной.

Все это представляет качественную сторону явлений. Однако, чтобы прогнозировать развитие реальных процессов в природных условиях, необходимо установить строгие количественные связи между содержанием незамерзшей воды, температурой и давлением в среде, а также величинами соответствующих потоков тепла и массы. Их запись основана на тщательном анализе многочисленных экспериментов и требует привлечения фундаментальных понятий термодинамики, механики деформируемых тел, гидродинамики. В совокупности образуется целое направление, исследующее физику криогенных процессов, которые могут происходить в холодных регионах Земли и космосе. Вершина этой деятельности - математические модели процессов, позволяющие давать количественную оценку самых различных по масштабам и значению событий прошлого, настоящего и будущего. Роль моделей важна и для обоснованного проектирования инженерных сооружений.

Баротермический эффект

Вернемся к мерзлому грунту. Хорошо известно, что твердые тела при сжатии нагреваются. Происходит это вследствие перехода энергии деформации в тепло, а также за счет внутреннего трения элементов среды. Однако взгляните на диаграммы температурного хода для образцов мерзлых грунтов под нагрузкой (рис. 2).
 

Рис. 2. Временной ход температуры мерзлого грунта при его нагружении и разгрузке. Слева - кривая для супеси пылеватой при начальной температуре te = –0.5°C, справа - для глины при te = –0.75°C. В обоих случаях внешняя нагрузка равна 3 МПа.

Они показывают, что в момент нагружения температура грунта скачкообразно понижается и восстанавливается практически до исходного значения при снятии груза. Обратим внимание, что его величина в несколько раз меньше, чем требуется для плавления обычного куска льда при той же отрицательной температуре. Почему? Ответ легко можно получить, если мы вспомним, что на контакте с пористым телом лед плавится при существенно меньших нагрузках. Но для плавления необходимо подвести тепло, которое может быть взято только из внутренних запасов грунта, определяемых его теплоемкостью. Происходит охлаждение всей системы. Этот эффект назван баротермическим, поскольку связывает изменения давления и температуры в мерзлом грунте в процессе его сжатия [3].

Кроме того, важно, что выделяющаяся влага дренирует в специальную обойму из плотной промокательной бумаги, в которой расположен образец грунта. Бумага обладает очень тонкопористой структурой, и вода в ней не замерзает. Если же взять обойму из более грубого материала, то отжимаемая вода в ней замерзнет, а тепловой эффект от фазовых превращений исчезнет. В этом случае на первый план выйдут силы трения между частицами грунта, и температура образца несколько повысится. Это и происходит, например, в талых, а также мерзлых, но маловлажных грунтах. В последнем случае внутри грунта имеются многочисленные воздушные полости, в которые собирается отжатая вода и там вновь замерзает. Природные грунты, как правило, водонасыщены, и баротермический эффект проявляется в естественных условиях неожиданным образом.

Посмотрим внимательно на рис. 3, где ромбиками показаны фактические данные измерения температуры мерзлых пород в специально оборудованной термометрической скважине на севере Тюменской области. Эксперимент готовился очень тщательно, что обеспечило точность измерения в 0.01°С, так что сомнения в достоверности данных отпадают. Слой мерзлого грунта, залегающий в интервале глубин h = 140-240 м, перекрывается талым водонасыщенным прослоем толщиной около 50 м. Выше, до самой поверхности массива, лежит еще один слой мерзлой породы, который не показан на рисунке. Нижний слой мерзлоты образовался во время прошлых похолоданий климата, а последующие потепления вызвали оттаивание только верхней части массива. Грунт, оставшийся при этом в мерзлом состоянии, называется реликтовым.
 

Рис. 3. Фактическое распределение температуры мерзлых пород (черные ромбики) по скважине, оборудованной на севере Тюменской обл., и его динамика с момента вытаивания льда в объеме реликтового слоя (по результатам модельных расчетов). 1 - начальное равновесное распределение, 2 - через 100 лет после начала процесса, 3 - через 500 лет, 4 - через 1000 лет.

Последующее похолодание привело к образованию верхнего слоя мерзлых пород, который, однако, не достиг кровли нижнего слоя мерзлоты. Климатические трансформации продолжались несколько тысячелетий. За столь значительное время температура внутри реликтового слоя должна была установиться в соответствии с условиями термодинамического равновесия в толще. Равновесная кривая (1) на рис. 3 имеет наклон из-за влияния гидростатического давления на точку фазового равновесия воды в мерзлом грунте. Значительное отклонение фактических данных от кривой равновесия представляется совершенно неожиданным. Реликтовый слой оказывается охлажденным ниже равновесной температуры, несмотря на то, что расположен между двумя талыми образованиями, имеющими положительную температуру. В этом можно было бы усмотреть даже нарушение второго начала термодинамики. Какое-либо традиционное объяснение такого распределения температуры практически невозможно. Например, можно предположить какое-либо специфическое распределение концентрации растворенных солей в поровом растворе, которые смещали бы точку равновесия фаз в пласте. Однако авторы наблюдений подчеркивают, что минерализация грунтовой воды чрезвычайно мала и не влияет на кривую равновесия. Не проходят и иные доводы, в частности основанные на колебаниях температуры поверхности массива в силу существования мощного талика над реликтовым слоем.

Ответ на вопрос содержится в диаграммах рис. 2 и анализе образования реликтового слоя. В период потепления, когда верхний слой грунта оттаивал, нижний мерзлый - нагревался. В какой-то момент нагрузка от вышележащей толщи стала превышать равновесное значение для внутригрунтового льда, который при более низких температурах находился в термодинамическом равновесии с окружающей породой. (Повышение нагрузки от верхнего слоя есть результат ослабления сдерживающего влияния мерзлого грунта, силы сцепления частичек которого ослабевают с повышением температуры.) С этого момента лед начал таять, что и привело к охлаждению массива. Плавление льда во всем объеме реликтового слоя протекает очень медленно, и наблюдаемое распределение температуры может сохраняться многие сотни и тысячи лет.

Строгие уравнения, которые переводят наши рассуждения в плоскость количественных расчетов, подтверждают этот вывод. Кривые 2-4 на рис. 3, полученные расчетным путем, показывают, сколь длительным может быть этот процесс. Важно здесь и то, что вытаивающая жидкость движется по незамерзающим коммуникациям мерзлого грунта в талые образования по обе стороны реликтового слоя. Интересно, как чутко реагирует мерзлый массив на изменение внешних условий в соответствии с общим принципом Ле Шателье. Потепление климата вызывает охлаждение массива!

Слоистость - память о прошлом

Рассмотрим еще одно интереснейшее явление, сопутствующее процессу промерзания грунта. На рис. 4 показана колонка грунта после промерзания в лабораторных условиях. Нижнее основание колонки во время опыта находилось в контакте с источником воды. Талый грунт сохранился в нижней части колонки и остался совершенно однородным. Промерзшая же часть сильно изменилась: образовалась четко выраженная слоистость. Слои мерзлого грунта перемежаются линзами чистого льда, толщина которых изменяется с глубиной вполне определенным образом.
 

Рис. 4. Криогенная текстура грунта, полученная в лаборатории.

Картина слоистости - текстура мерзлого грунта - оказывается связанной со свойствами грунта и условиями его промерзания. Например, при некоторых условиях для грунта данного типа толщина ледяных линз может превысить высоту начальной талой колонки. Вообще же по текстуре мерзлого грунта можно в принципе восстановить температурные условия его промерзания. Подобную слоистость мы видим и в природных толщах мерзлой породы. Она прослеживается до весьма значительных глубин - 100-150 м. Максимальная же толщина ледяных линз наблюдается в верхних 10-40 м. Ниже их толщина монотонно снижается, а расстояние между линзами увеличивается. Довольно часто в верхних слоях мерзлого грунта обнаруживаются слои льда толщиной от единиц до нескольких десятков метров.

Застывшая картина слоистости в промерзших рыхлых отложениях напрямую связана с климатом прошлых тысячелетий. Познать же закономерности изменения климата означает обрести ключ к разгадке многих тайн, которые волнуют человечество. Каким же образом возникает слоистость? Можно сразу сказать, что рост отдельных линз вполне аналогичен картине, которую мы описали для ледяного тела на поверхности керамического фильтра. Но чем вызвано их возникновение в данном конкретном месте и почему они прекращают свой рост спустя какое-то время? Ответ на эти вопросы требует анализа внутренних напряжений в промерзающем грунте, а точнее в той зоне, где расположена корневая система растущей линзы.

Если при стационарном росте льда на поверхности фильтра протяженность корневой зоны не меняется, то при промерзании грунта ее длина все время увеличивается и внутренние напряжения в отдельных компонентах грунта также меняются. По законам механики, в каждом поперечном сечении зоны корневой системы величина внешней нагрузки всегда должна быть равна сумме напряжений в отдельных компонентах грунта. Иными словами, нагрузка равна сумме внутрипоровых напряжений (обусловленных внутренним давлением во льду и незамерзшей воде) и напряжений в скелете минеральных частиц грунта. Этот баланс подразумевает, что при постоянной общей нагрузке увеличение давления внутри пор сопровождается уменьшением напряжений в скелете.

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5259
Авторов
на СтудИзбе
421
Средний доход
с одного платного файла
Обучение Подробнее