109039 (Оптоэлектроника. Полупроводниковые светоизлучающие структуры)

2016-08-01СтудИзба

Описание файла

Документ из архива "Оптоэлектроника. Полупроводниковые светоизлучающие структуры", который расположен в категории "". Всё это находится в предмете "наука и техника" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "рефераты, доклады и презентации", в предмете "наука и техника" в общих файлах.

Онлайн просмотр документа "109039"

Текст из документа "109039"

Оптоэлектроника. Полупроводниковые светоизлучающие структуры.

1. ФИЗИЧЕСКИЕ ОСНОВЫ ОПТОЭЛЕКТРОНИКИ.

1.1. Предмет оптоэлектроники.

Оптоэлектроника представляет собой раздел науки и техники, занимающийся вопросами генерации, переноса (передачи и приёма), переработки (преобразования), запоминания и хранения информации на основе использования двойных (электрических и оптических) ме-

тодов и средств.

Оптоэлектронный прибор - это (по рекомендации МЭК) прибор, чувствительный к электромагнитному излучению в видимой, инфракрасной или ультрафиолетовой областях; или прибор, излучающий и преобразующий некогерентное или когерентное излучение в этих же спектральных областях; или прибор, использующий такое электромагнитное излучение для своей работы.

Обычно подразумевается также "твердотельность" оптоэлектронных приборов и устройств или такая их структура (в случае использования газов и жидкостей), которая допускала бы реализацию с применением методов современной интегральной техники в

микроминиатюрном исполнении. Таким образом, оптоэлектроника базируется на достижениях целого ряда достижений науки и техники, среди которых должны быть выделены прежде всего квантовая электроника, фотоэлектроника, полупроводниковая электроника и технология, а также нелинейная оптика, электрооптика, голография, волоконная оптика.

Принципиальные особенности оптоэлектронных устройств связаны с тем, что в качестве носителя информации в них наряду с электронами выступают электрически нейтральные фотоны. Этим обуславливаются их основные достоинства:

1. Высокая информационная ёмкость оптического канала.

2. Острая направленность излучения.

3. Возможность двойной модуляции светового луча - не только временной, но и пространственной.

4. Бесконтактность, "элетропассивность" фотонных связей.

5. Возможность простого оперирования со зрительно воспринимемыми образами.

Эти уникальные особенности открывают перед оптоэлектронными приборами очень широкие возможности применения в качестве элементов связи, индикаторных приборов, различных датчиков. Тем самым оптоэлектроника вносит свою, очень значительную, долю в комплексную микроминиатюризацию радиоэлектронной аппаратуры. Дальнейшее развитие и совершенствование средств оптоэлектроники служит техническим фундаментом разработки сверхвыскопроизводительных вычислительных комплексов, запоминающих устройств гигантской ёмкости, высокоскоростной связи, твердотельного телевидения и инфравидения.

Основу практически любой оптоэлектронной системы составляет источник излучения: именно его свойства и определяют, в первую очередь, лицо этой системы. А все источники можно подразделить на две большие группы: с когерентным (лазеры) и с некогерентным

(светоизлучающие диоды и др.) излучением. Устройства с использованием когерентного или некогерентного света обычно резко отличаются друг от друга по важнейшим характеристикам.

Всё это оправдывает использование таких терминов как "когерентная оптоэлектроника" и "некогерентная оптоэлектроника". Естественно, что чёткую грань провести невозможно, но различия между ними очень существенны.

История оптоэлектроники ведёт своё начало с открытия оптического квантового генератора - лазера (1960 г.). Примерно в то же время (50-60-е гг.) получили достаточно широкое распространение светоизлучающие диоды, полупроводниковые фотоприёмники, устройства управления световым лучом и другие элементы оптоэлектроники.

1.2. Генерация света.

Оптический диапазон составляют электромагнитные волны, длины которых простираются от 1 мм до 1 нм. Оптический диапазон замечателен тем, что именно в нём наиболее отчётливо проявляется корпускулярно-волновой дуализм; энергия фотона и соответствующиеей частота колебаний и длина волны света связаны следующими соотношениями:

   7)

 7n 0[Гц] = 3 77 010 514 0/ 7l 0[мкм] 7 2

 78

 7e 4ф 0[эВ] = 1,234/ 7l 0[мкм] 7 2

 70

 

При известной удельной мощности P плотность фотонного потока N определяется выражением

N[м 5-2 0с 5-1 0] = 5,035 77 010 512 77l 0[мкм] 77 0P[мкВт 77 0м 5-2 0].

Все светогенерационные эффекты относят либо к тепловому излучению, либо к одному из видов люминесценции. Спектр излучения нагретого тела определяется формулой Планка, которая для так называемого абсолютно чёрного тела имеет вид

f( 7l 0,T) = 2 7p7 0h 77 0c 52 77l 5-5 0[ exp(hc/(kT 7l 0)) - 1] 5-1 0,

где h, c, k - известные универсальные константы; T – абсолютная температура. При достаточно высоких температурах (>2500...3500 К) часть спектра теплового излучения приходится на видимую область.

При этом, однако, всегда значителен длинноволновый "хвост".

Люминесценция представляет собой излучение, характеризующееся тем, что его мощность превышает интенсивность теплового излучения при данной температуре ("холодное" свечение).

Известно, что электроны в атоме могут находиться в ряде дискретных энергетических состояний, при тепловом равновесии они занимают наинизшие уровни. В люминесцирующем веществе за счёт энергии того или иного внешнего воздействия часть электронов переходит на более высокие энергетические уровни E 42 0. Возвращение этих электронов на равновесный уровень E 41 0 сопровождается испусканием фотонов с длиной волны, определяемой простым соотношением:

 

1,23

 7l 0 = ───────────── [мкм]

(E 42 0 - E 41 0)[эВ]

  Физика люминесценции предопределяет две примечательные особенности процесса: узкий спектр излучения и возможность использования большого числа способов возбуждения. В оптоэлектронике главным образом используются электролюминесценция (пробой и инжекция p-n перехода в полупроводниках), а также фото- и катодолюминесценция (бомбардировка люминофора быстрыми электронами).

При распространении световых лучей важную роль играет дифракция, обусловленная волновой природой света и приводящая, в частности, к тому, что выделенный с помощью оптической системы параллельный пучок становится расходящимся, причём угол расходимости близок к  7f 4D 0 = 7 l 0/D , где D - апертура (диаметр луча света).

Дифракционный предел разрешающей способности оптических систем соизмерим с 7 l 0, а плотность записи информации с помощью световых потоков не может превысить 7 l 5-2 0.

В веществе с показателем преломления n скорость распространения светового луча становится c/n, а поскольку величина n зависит от длины волны (как правило, растёт с уменьшением 7 l 0), то это обуславливает дисперсию.

1.3. Источники излучения.

Оптоэлектроника базируется на двух основных видах излучателей: лазерах (когерентное излучение) и светоизлучающих диодах (некогерентное излучение).

В оптоэлектронике находят применение маломощные газовые, твердотельные и полупроводниковые лазеры. Разрежённость газового наполнения в рабочем объёме обусловливает высокую степень монохроматичности, одномодовость, стабильность частоты, острую направленность и, в конечном счёте, когерентность излучения. В то же время значительные габариты, низкий к.п.д., прочие недостатки газоразрядных приборов не позволяют рассматривать этот вид ОКГ как универсальный оптоэлектронный элемент.

Значительные мощности излучения твердотельных лазеров обуславливают перспективность применения этих генераторов в дальнодействующих волоконнооптических линиях связи.

Наибольший интерес для разнообразных оптоэлектронных применений представляют полупроводниковые лазеры благодаря высокому к.п.д., малым габаритам, высокому быстродействию, простоте управления. Особенно выделяются гетеролазеры на основе тройного полупроводникового соединения Ga Al As. В их структуре тонкий слой n-типа проводимости "зажат" между областями n- и p-типов того же материала, но с большими значениями концентраций алюминия и соответственно этому большими ширинами запрещённой зоны. В роли резонатора может также выступать поверхностная дифракцион-

ная решётка, выполняющая функцию распределённой оптической обратной связи.

Для оптоэлектроники особый интерес представляют полупроводниковые излучатели - инжекционные (светодиоды) и электролюминесцентные (электролюминофоры). В первых излучение появляется в результате рекомбинации дырок с инжектированными через pn-переход электронами. Чем больше ток через светодиод, тем ярче его высвечивание. В зависимости от материала диода и примесей в нём меняется цвет генерируемого излучения: красный, жёлтый, зелёный, синий (соединения галия с фосфором и азотом, кремния с углеродом и пр., см. табл.1). Светодиоды на основе соединения галия с мышьяком генерируют невидимое излучение с длиной волны 0,9...0,92 мкм. На этой длине волны кремниевые фотоприёмники имеют максимальную чувствительность. Для светодиодов характерны малые размеры (0,3 7& 00,3 мм), большие срок службы (до 100 тыс. ч.) и быстродействие (10 5-6 0...10 5-9 0 с), низкие рабочие напряжения (1,6...3,5 В) и токи (10...100 мА).

Таблица 1. Основные материалы для светодиодов.

Полупроводник

4050

710, А

Цвет

Эффективность

%

Быстродействие,

нс

GaAs

9500

9000

ИК

12; 50 5* 0

2

10 5-7 0...10 5-6 0

10 5-9 0...10 5-8 0

GaP

6900

5500

Красный

Зелёный

7

0,7

10 5-7 0...10 5-6 0

10 5-7 0...10 5-6 0

GaN

5200

4400

Зелёный

Голубой

0,01

0,005

GaAs 41-x 0P 4x 0

6600

6100

Красный

Янтарный

0,5

0,04

3 77 010 5-8 0

3 77 010 5-8 0

Ga 41-x 0Al 4x 0As

8000

6750

ИК

Красный

12

1,3

10 5-8 0

3 77 010 5-8 0

In 41-x 0Ga 4x 0P

6590

5700

Красный

Желто-зеленый

0,2

0,1

Излучатели на основе люминофоров представляют собой порошковые или тонкоплёночные конденсаторы, выполненные на стеклянной прозрачной подложке. Роль диэлектрика выполняет электролюминофор на основе соединения цинка с серой, который излучает свет под действием сильного знакопеременного электрического поля. Такие светящиеся конденсаторы могут изготовляться различных размеров (от долей сантиметра квадратного до десяти и более квадратных метров), различной конфигурации, что позволяет изготавливать из них знакобуквенные индикаторы, отображать различные схемы, карты, ситуации.

В последнее время для малогабаритных устройств индикации широко стала использоваться низковольтная катодолюминесценция - свечение люминофора под действием электронного луча. Такие источники излучения представляют собой электровакуумную лампу, анод которой покрыт люминофором, излучающим красный, жёлтый, зелёный, синий свет при попадании на него ускоренных электрическим полем электронов. Простота конструкции, низкая стоимость, большие яркости и большой срок службы сделали катодолюминесценцию удобной для различных применений в оптоэлектронике.

2. СВЕТОДИОДЫ.

Наиболее перспективными источниками излучения для оптоэлектроники являются светодиоды. Такими их делают малые габариты и масса (излучающие площади 0,2...0,1 мм 52 0 и менее), большой срок службы, измеряемый годами и даже десятками лет (10 54 0...10 55 0 ч), высокое быстродействие, не уступающее интегральным схемам (10 5-9 0...10 5-5 0 с), низкие рабочие напряжения (1,6...2,5 В), малая потребляемая мощность (20...600 мВт), возможность получения излучения заданного спектрального состава (от синего до красного в видимой части спектра и ближнего инфракрасного излучения). Они используются в качестве источника излучения для управления фотоприёмниками в оптронах, для представления цифро-буквенной информации в калькуляторах и дисплеях, для ввода информации в компьютерах и пр.

Светодиод представляет собой гомо- или гетеро-pn-переход, прохождение тока через который в прямом направлении сопровождается генерацией в полупроводнике излучения. Излучение является следствием инжекционной люминесценции - рекомбинации инжектированных через pn-переход эмиттером неосновных носителей тока (электронов) с основными носителями тока в базе (дырками) (люминесценция - испускание света веществом, не требующее для этого нагрева вещества; инжекционная э электролюминесценция означает, что люминесценция стимулирована электрическим током).

Электролюминесценция может быть вызвана также сильным электрическим полем, как в случае электролюминесцентных конденсаторов с диэлектриком из порошка сернистого цинка (предпробойная электролюминесценция Дестрио).

Светодиоды для видимого и ближнего инфракрасного излучения изготавливаются главным образом из монокристаллов материалов типа A 5III 0B 5V 0: фосфида галия, арсенида галия и более сложных соединений: GaAs 41-x 0P 4x 0 , Ga 41-x 0Al 4x 0As , где x - доля содержания того или другого элемента в соединении.

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5259
Авторов
на СтудИзбе
421
Средний доход
с одного платного файла
Обучение Подробнее