lab_7 (Лабники по БЖД с кафедры)

2015-08-20СтудИзба

Описание файла

Документ из архива "Лабники по БЖД с кафедры", который расположен в категории "". Всё это находится в предмете "безопасность жизнедеятельности (бжд и гроб или обж)" из 8 семестр, которые можно найти в файловом архиве НИУ «МЭИ» . Не смотря на прямую связь этого архива с НИУ «МЭИ» , его также можно найти и в других разделах. Архив можно найти в разделе "книги и методические указания", в предмете "безопасность жизнедеятельности (бжд)" в общих файлах.

Онлайн просмотр документа "lab_7"

Текст из документа "lab_7"

9


Лабораторная работа 7

ОЦЕНКА ЭФФЕКТИВНОСТИ ЭКРАНОВ ДЛЯ ЗАЩИТЫ ОТ ТЕПЛОВОГО ИЗЛУЧЕНИЯ

Цель работы

Определение интенсивности теплового облучения на рабочем месте и оценка эффективности защитных экранов.

Содержание работы

1. Измерить интенсивность теплового облучения на разных расстояниях от источника излучения:

а) при отсутствии защитных экранов;

б) при наличии защитного теплопоглощающего экрана - цепной завесы;

в) при наличии защитного теплоотводящего экрана - водяной завесы.

  1. Измерить температуру источника излучения.

  2. Рассчитать интенсивность теплового облучения в точках измерения при отсутствии защитных экранов и при наличии водяной завесы.

4. Рассчитать длину волны с максимальной энергией теплового излучения.

5. Рассчитать коэффициенты эффективности защитных экранов.

Тепловое излучение и защита от него

Процессы теплопередачи имеют широкое распространение в тепловой и атомной энергетике, ракетно-космической технике, металлургии, химической технологии, светотехнике, гелиотехнике и др.

Перенос теплоты от нагретых тел в окружающем пространстве осуществляется по законам теплопроводности, конвективного теплообмена и теплообмена излучением.

В отличие теплопроводности и конвекции, где плотность теплового потока зависит от температуры в первой степени, перенос энергии излучением определяется четвертой степенью абсолютной температуры. Вследствие этого при высоких температурах основным видом переноса теплоты является излучение.

При температурах 500°С около 60-90% всей теплоты, выделяемой производственным оборудованием и материалами, распространяется в окружающем пространстве путем излучения. При этом энергия излучения проходит воздушную среду практически без потерь, снова превращаясь в тепловую энергию облучаемых тел.

Основополагающие законы теплового излучения были установлены физиками в конце 19 века и носят их имена.

Закон Стефана-Больцмана выражает зависимость плотности теплового излучения абсолютно черного тела от абсолютной температуры в четвертой степени

С =  Т4 = Со (Т/100) 4, (1)

где , Со - постоянная и коэффициент излучения абсолютно черного тела (Со = 108  = 5,67 [ Вт/м2К4]). На практике приходится иметь дело с серыми телами, для них закон Стефана-Больцмана имеет вид:

Еi = i = С (Т/100 )4 , (2)

где i=Ei/ - степень черноты i-го тела (0 < < 1),

С - коэффициент излучения серого тела [Вт/м2К4].

3акон Планка устанавливает связь спектральной плотности теплового излучения абсолютно черного тела Io [Вт/м2], с длиной волны излучения [м] и абсолютной температурой тела:

Io = C1 -5/ [ ехр ( С2 /Т ) - 1] . (3)

В этом выражении: C1=3,7410-18 [Вт/м2] и С2=1,4410 [мК] - постоянные излучения.

Графически закон Планка представлен на рис.1.


В.Вин в 1893 году установил, что произведение абсолютной температуры тела на длину вечны максимальной энергии теплового излучения есть величина постоянная:

ТMAX= 2,898 [мК]. (4)

Это выражение получило название закона смещения Вина: с ростом температуры максимум спектральной плот-ности потока излучения смещается в коротковолновую область.

Расчет теплообмена излучением между двумя телами является сложной задачей. В общем случае поток энергии между телами определяется температурами тел, их формами, размерами и состоянием поверхностей, взаимным расположением в пространстве и расстоянием между ними. Аналитически эту зависимость можно представить в виде:

Q1,2 = пр С S1[(T1 /100) 4 - (Т2 /100) 4 ] 1,2 , ( 5 )

где пр =[ l/1+ (S1/S2) (1/2 -1)] - приведенная степень черноты двух тел;

S1, S2 - площади поверхностей теплоизлучающего и теплопринимающего тел [м2];

1,2 = Q2/Q1 - коэффициент облученности, показывающий какая доля энергии излучения первого тела (Q1) попадает на второе тело (Q2). Коэффициент облученности можно рассчитать по законам геометрической оптики или взять из справочной литературы.

При длительном пребывании человека в зоне лучистого потока теплоты происходит нарушение теплового баланса в его организме, что может вызвать заболевание, называемое тепловой гипотермией (перегревом). В нормальных условиях в организме человека поддерживаются стабильные и постоянные условия для функционирования биологических клеток. Это явление называется гомеостазом. Одним из механизмов гомеостаза является система поддержания постоянства внутренней температуры тела человека. Если гомеостатическая система поддержания постоянства температуры организма не справляется с рассеянием избыточного поступающего тепла наступает гипотермия. При этом нарушаются и другие защитные гомеостатические функции организма. Поэтому это заболевание характеризуется не только повышением температуры тела, но и обильным потоотделением, значительным учащением пульса и дыхания, резкой слабостью, головокружением, изменением зрительных ощущений, шумом в ушах и, зачастую, потерей сознания.

Гомеостатические системы поддержания стабильности жизнедеятельности организма связаны между собой и помогают друг другу преодолевать отрицательные внешние воздействия иногда заменяя вышедшие из строя. Поэтому даже при уровнях теплового излучения, не вызывающих гипотермию наблюдается ослабление внимания, замедление реакций, ухудшение координации движений, что в свою очередь приводит к снижению производительности труда.

Тепловой эффект воздействия облучения зависит от многих факторов. Интенсивность облучения менее 700 Вт/м не вызывает у человека неприятного ощущения, если действует несколько минут; свыше 3500 Вт/м - уже через 2 с вызывает жжение, а через 5 с возможен тепловой удар. Производственные источники по характеру спектрального излучения условно можно разделить на четыре группы:

1) с температурой излучающей поверхности до 500 °С (паропроводы, сушильные установки, низкотемпературные аппараты, наружная поверхность различных печей и др.); их спектр содержит длинные инфракрасные лучи (длина волны 3,7 - 9, 3 мкм);

2) с температурой поверхности от 500 до 1300 °С (открытое пламя, открытые проемы нагревательных печей и топок, нагретый металл  слитки, заготовки, расплавленные чугун и бронза и др.); их спектр содержит преимущественно инфракрасные лучи (1,9-3,7 мкм), но появляются и видимые лучи;

3) с температурой 1300-1800 °С (открытые проемы плавильных печей, расплавленная сталь и др.); их спектр содержит как инфракрасные лучи вплоть до коротких (1,2-1,9 мкм ), так и видимые большой яркости;

4) с температурой выше 1800 °С (пламя электродуговых печей, сварочных аппаратов и др.) их спектр излучения содержит наряду с инфракрасными (0,8-1,2 мкм) и видимыми (0,4-0,8 мкм ) также и ультрафиолетовые лучи.

Существуют следующие способы защиты от вредного воздействия теплового излучения: тепловая изоляция нагретых поверхностей, экранирование источников теплового излучения, применение воздушного душирования, удаление от источника теплового излучения (дистанционное управление), сокращение времени пребывания в зоне воздействия теплового излучения, использование средств индивидуальной защиты (защитные очки, маски, одежда).

Наиболее распространенным и эффективным способом защиты от теплового излучения является экранирование - создание определенного термического сопротивления на пути теплового потока в виде экранов различных конструкций (жестких глухих, сетчатых, полупрозрачных водяных, воздушно-водяных и др.). Различают теплоотражающие, теплопоглощающие и теплоотводящие экраны. В свою очередь, по степени прозрачности они делятся на три класса: непрозрачные, полупрозрачные и прозрачные. К теплоотражающим экранам относятся жесткие глухие преграды, изготовленные из материалов с высокой степенью отражения такие, как алюминий листовой, белая жесть, альфоль (алюминиевая фольга), а также закаленные стекла с пленочным покрытием. В последнее время получила распространение вакуумно-многослойная изоляция, изготовленная из множества полированных металлических пластин с зазорами, из которых откачен воздух. Эти экраны отличает высокая эффективность (отражается до 58% излучения), малая масса, экономичность. Однако, эти экраны не выдерживают высоких механических нагрузок, эффективность их существенно снижается при отложении на них пыли, при окислении.

В настоящее время нашли широкое применение экраны, выполненные из металлической плотной сетки или из металлических мелких цепей, подвешенных против излучающего проема в один или несколько рядов. Хотя цепные экраны не могут защищать от излучения так хорошо, как глухие (цепные завесы снижают тепловой поток на 60-70%), их применение в ряде случаев оправдано, поскольку они позволяют наблюдать за ходом технологического процесса.

Теплоотводящие экраны (водяные и вододисперсные завесы) применяют в тех случаях, когда через экран необходимо вводить инструмент или заготовки. Коэффициент эффективности водяных завес в значительной степени зависит от спектрального состава излучения м толщины слоя и может достигать 80%. Экраны в виде водяной пленки, стекающей по стеклу более устойчивы по сравнению со свободными водяными завесами. Их эффективность порядка 90%.

В определении оптимальных условий защиты от теплового излучения важное значение имеет характер его спектрального состава, так как материал экрана должен поглотить или отразить лучи, несущие максимум энергии. Как видно из рис.2 для организации эффективной защиты от теплового излучения необходимо устранить в лучистом потоке по возможности наибольший диапазон длинноволнового излучения, которое хорошо поглощается поверхностью кожи человека.


В этом отношении хорошо зарекомендовали себя прозрачные водяные завесы в виде сплошной тонкой водяной пленки, образующейся при равномерном стекании воды с гладкой поверхности.

Вода является активным поглотителем инфракрасных лучей. Наиболее сильное поглощение отмечается в зоне лучей с длиной волны =1,5-6,0 мкм.

Слой воды толщиной 1мм полностью поглощает участок спектра с = 3 мкм, а слой 10 мм - тепловой поток с длиной волны = 1,5 мкм.

Таким образом, слой воды, применяемый в защитных экранах, должен иметь толщину порядка нескольких мм, при этом однако коротковолновое излучение высокотемпературных источников не будет поглощено, что проявляется, например, в видимости светового излучения: являющегося коротковолновой части теплового излучения. Поэтому тонкие водяные завесы эффективны в основном для экранирования излучений от низкотемпературных источников (до 800 С ).

Интенсивность теплового облучения Е [Вт/м2], которому подвергается человек применительно к условиям данного лабораторного стенда, можно оценить по приближенной формуле:

Е0=0,91S[(Tизл/100)4(Tобл/100)4]/L2 , (6)

где S - площадь излучающей поверхности, м2;

Тизл - температура излучающей поверхности, К;

Тобл - температура облучаемой части тел, К (для приближенного расчета можно принять Тобл = 309 К, то есть =36 °С);

L - расстояние от источника излучения, м.

Формула (6 ) верна при условии L  .

Расчет интенсивности облучения при наличии водяной завесы построен на принципе ослабления лучистого потока при прохождении через мутную среду с определенным оптическим показателем.

Уравнение поглощения лучистой энергии какой-либо средой имеет вид

Е= Eoexp(-d), (7)

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5259
Авторов
на СтудИзбе
421
Средний доход
с одного платного файла
Обучение Подробнее