49565 (Дослідження зміни температури термопари за допомогою чисельних методів на ЕОМ), страница 2

2016-07-30СтудИзба

Описание файла

Документ из архива "Дослідження зміни температури термопари за допомогою чисельних методів на ЕОМ", который расположен в категории "". Всё это находится в предмете "информатика" из 1 семестр, которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "курсовые/домашние работы", в предмете "информатика, программирование" в общих файлах.

Онлайн просмотр документа "49565"

Текст 2 страницы из документа "49565"

де всі (j=0,…, n) – поліноми ступеня n, коефіцієнти яких можна знайти з допомогою (n+1) рівняння: .

Для полінома, який шукаємо, отримаємо:

(1.8)

Формулу (1.8) називають інтерполяційний многочлен Лагранжа.

Треба відзначити дві головні властивості поліномів Лагранжа:

  1. (1.9)

2) якщо лінійно залежить від , то слушний принцип суперпозиції: інтерполяційний поліном суми декількох функцій дорівнює сумі інтерполяційних поліномів доданків.

Похибка при інтерполяції за Лагранжем може бути оцінена таким чином:

(1.10)

де .

1.3.2 Перший інтерполяційний многочлен Ньютона.

Інтерполяційний поліном випадку має вигляд:

...

...+ , (1.11)

Коефіцієнти знаходять з рівнянь:

, , (1.12)

(1.13)

Формула (1.13) носить назву першої інтерполяційної формули Ньютона. Цей вираз незручний для інтерполяції поблизу останніх значень .

Похибка інтерполяції для першої формули Ньютона можна оцінити відповідно як: (1.14)

де (1.15)

1.3.3 Другий інтерполяційний многочлен Ньютона

В випадку, коли, першу інтерполяційну формулу Ньютона застосувати незручно, використовують другу інтерполяційну формулу Ньютона, яка отримана при використанні лівих різниць від останнього значення (інтерполяція “назад”). Тоді інтерполяційний поліном має вигляд:

(1.16)

Коефіцієнти визначаються таким чином:

, (1.17)

(1.18)

– ліва різниця першого порядку в точці ,

(1.19)

– ліва різниця другого порядку.

(1.20)

(1.21)

Формула (1.21) є кінцевим виразом для другої інтерполяційної формули Ньютона.

Похибка інтерполяції для другої формули Ньютона можна оцінити відповідно як:

(1.22)

де (1.23)

1.3.4 Інтерполювання функцій за схемою Ейткіна

Особливістю інтерполяційної схеми Ейткіна є однотипність обчислень. Якщо в (n+1)-му вузлах інтерполювання xi (i=0,1,…,n) функція f набуває значеньyi (i=0,1,…,n),то значення інтерполяційного многочлена степеня n в точці , що не зберігається з вузлами інтерполювання, обчислюють за формулою Ейткіна:

(1.24)

де і – значення інтерполяційних многочленів (n-1)-го степеня, обчислених у точці х на попередньому кроці обчислень.

Отже, щоб обчислити в точці х значення інтерполяційного многочлена n-го степеня за схемою Ейткіна, треба в цій точці обчислити значення n лінійних, n-1 квадратичних, n-2 кубічних многочленів, два многочлени (n-1)-го степеня і, нарешті, один многочлен n-го степеня.

1.3.5 Сплайн-інтерполяція

Сплайн – це група сполучених кубічних багаточленів, в місцях сполучення яких перша та друга похідні безперервні. Такі функції звуться кубічними сплайнами. Для їх побудування необхідно задати коефіцієнти, які однозначно визначають поліном у проміжку між двома точками.

Наприклад, у випадку, який показаний на рисунку 1.3.1, необхідно задати всі кубічні функції В найбільш загальному випадку ці багаточлени мають такий вигляд:

i=1,2, ... ,m (1.25)

де – постійні, які визначені вказаними умовами (j= 1,2,3,4).

Перші (2m) умов потребують, щоб сплайни стикалися в заданих точках:

,i=1, 2, ... , m,

, i=0, 1, ... , m-1. (1.26)

Наступні (2m-2) умов потребують, щоб в місцях дотику сплайнів були рівні перші та другі похідні

i=1, ... , m-1, (1.27)

i=1, ... , m-1.

Система алгебраїчних рівнянь має розв’язок, якщо кількість рівнянь дорівнює кількості невідомих. Для цього необхідні ще два рівняння. Як правило, використовують такі додаткові умови:

(1.28)

Отриманий таким чином сплайн зветься “природним кубічним сплайном”.

В багатьох випадках метод сплайнів є найбільш зручним, тому що це дозволяє отримати аналітичну кусково-поліноміальну функцію. Існують сплайни більш вищих порядків. Вживання цього методу можливо і в інших галузях обчислювальної математики, наприклад, в чисельному інтегруванні і розв’язанні диференціальних рівнянь.

1.4 Уточнена постановка задачі

Нехай на відрізку [а; b] визначено певний клас функцій {Р(х)}, наприклад клас алгебраїчних многочленів, а в точках х0, х1,..., хn цього проміжку задано значення деякої функції y=f(x): y0=f(x0), y1=f(x1),….yn=f(xn). Наближену заміну функції f на відрізку [а; b] однією з функцій Р(х) цього класу так, щоб функція P(х) в точках x0,x1, ..., xn набувала тих самих значень, що й функція f, тобто щоб Р(xi)= уi (і = 0, 1, ..., n), називають інтерполюванням, або інтерполяцією. Точки х0, хi, ..., хп називають вузлами інтерполювання, функцію Р(х) — інтерполюючою функцією, а формулy у=P(х), за допомогою якої обчислюють значення функції f у проміжку [а;b], — інтерполяційною формулою.

З геометричного погляду задача інтерполювання полягає в знаходженні кривої у= Р(х) певного класу, яка проходить через точки площини з координатами (хi, уi)

(i = 0, 1, ....,n) (рис.1.1.1).

Якщо функція Р(х) належить класу алгебраїчних многочленів, то інтерполювання називається параболічним. Параболічне інтерполювання найзручніше, оскільки многочлени, які прості за формою і не мають особливих точок, можуть набувати довільних значень, їх легко обчислювати, диференціювати й інтегрувати.

У деяких випадках доцільніше використовувати інші класи інтерполюючих функцій. Якщо, наприклад, функція f періодична, то функцію Р(х) природно вибирати з класу тригонометричних многочленів, а якщо функція f перетворюється в нескінченність у заданих точках або поблизу них, то функцію Р(х) доцільно вибирати з класу раціональних функцій.

Розглядатимемо лише задачу параболічного інтерполювання, яку сформулюємо так: в n+1 різних точках х0, x1,..., хn задано значення

функції f: y0=f(x0), y1=f(x1),…, yn=f(xn) і треба побудувати многочлен

(1.29)

степеня n, який задовольняв би умови

(1.30)

Для визначення n+1 коефіцієнтів многочлена (1.29), який задовольняє умови (1.30), запишемо систему (n+1)-го лінійних рівнянь виду:

(1.31)

Ця система має єдиний розв'язок, бо її визначник є визначником Вандермонда, який не дорівнює нулю, бо вузли xi=(i=0,1,…,n) різні. А тому й задача параболічного інтерполювання має єдиний розв'язок, тобто існує єдиний алгебраїчний многочлен виду (1.29), що задовольняє умови (1.30). Многочлен Рn(х), який задовольняє умови (1.29), називають інтерполяційним многочленом, наближену рівність f(x)=Pn(x) –

інтерполяційною формулою, а різницю Rn(f,x)=f(x) – Pn(x) — залишковим членом інтерполяційної формули. Хоч інтерполяційний многочлен, що задовольняє умови (1.29), і єдиний, проте можливі різні форми його запису.

Інтерполяційний многочлен будують тоді, коли:

1) функцію задано таблично для деяких значень аргументу, а треба знайти її значення для значень аргументу, яких у таблиці немає;

2) функцію задано графічно, наприклад за допомогою самописного приладу, а треба знайти її наближений аналітичний вираз;

3) функцію задано аналітичнo, але її вираз досить складний і незручний для виконання різних математичних операцій (диференціювання, інтегрування тощо).

2 Розробка алгоритмів моделювання зміни температури термопари за допомогою чисельних методів на ЕОМ

2.1 Планування вхідних та вихідних даних

Для розв’язання поставленої задачі потрібні певні вхідні данні, на основі яких будуть проводитись обчислення. В нашому випадку вхідними даними будуть значення температури з постійним кроком та показання вольтметра.

Дані, які вводяться для обчислення зміни температури термопари мають тип float, тобто вони можуть приймати як цілі, так і дробові значення на інтервалі 3.4*10-38 до 3.4* 1038. Всі вхідні та вихідні данні можна звести в таблицю.

Таблиця 2.1.1 Вхідні та вихідні данні

Назва змінної

Ідентифікатор

Межі зміни

Тип

1

Значення Т

x[N]

3.4*10-38 -3.4* 1038

float

2

Значення QмВ

y[N]

3.4*10-38 -3.4* 1038

float

3

Значення температури

Tt

3.4*10-38 -3.4* 1038

float

4

Значення температури

Ttn

3.4*10-38 -3.4* 1038

float

5

Результат по Лагранжу

FLTt

1,7Е-308…1,7+308

double

6

Результат по Ньютону

FNTt1

1,7Е-308…1,7+308

double

7

Похибка

E

3.4*10-38 -3.4* 1038

float

2.2 Аналіз задач, які вирішуються при дослідженні зміни температури термопари на ЕОМ

Як відомо, термопара – це найпростіше замкнене електричне коло, що складається з двох різнорідних провідників (чи напівпровідників).

Згідно індивідуального завдання на курсову роботу, було розроблено програмний продукт, який виконує наступні функції:

  • програма дає змогу інженеру отримати інформацію про температуру провідників, що входять до складу термопари при певній напрузі, яку показує вольтметр;

  • програма покращує підбір матеріалу для провідників, що входять до складу термопари, яку в подальшому застосовують в різних сферах діяльності,(наприклад економічні і виробничі холодильні установки), завдяки тому, що інженер має можливість отримувати інформацію про температуру досліджуваного провідника в залежності від напруги, що проходить через нього;

  • зручний інтерфейс, дає змогу інженеру підібрати групу матеріалів по характеристикам , що відповідають запитам, навіть самого прискіпливого клієнта;

  • оформлення процесу підбору, з виведенням відповідного звіту про температуру матеріалу, напругу, що проходила через нього та похибку даного вимірювання.

2.3 Описовий алгоритм головної програми

Основна програма працює в режимі двухрівневого меню, яке розроблене в Turbo C. В розробленій програмі використовується меню, тобто всі функції можуть використовуватись нескінченну кількість разів. Така властивість забезпечується завдяки використанню циклу в головній програмі, вихід з якого здійснюється лише при одній умові : вибір пункту меню „Вихід”.

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Нашёл ошибку?
Или хочешь предложить что-то улучшить на этой странице? Напиши об этом и получи бонус!
Бонус рассчитывается индивидуально в каждом случае и может быть в виде баллов или бесплатной услуги от студизбы.
Предложить исправление
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5076
Авторов
на СтудИзбе
455
Средний доход
с одного платного файла
Обучение Подробнее