49161 (Створення мікропроцесорної системи обробки інформації)

2016-07-30СтудИзба

Описание файла

Документ из архива "Створення мікропроцесорної системи обробки інформації", который расположен в категории "". Всё это находится в предмете "информатика" из 1 семестр, которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "курсовые/домашние работы", в предмете "информатика, программирование" в общих файлах.

Онлайн просмотр документа "49161"

Текст из документа "49161"

Содержание


Вступ

1. Розробка структурної схеми системи

2. Розробка І опис принципової схеми системи

2.1 Розробка мікропроцесорного блоку

2.2 Розробка блоку пам’яті (ОЗП і ПЗП)

2.3 Інтервальний таймер

2.4 Аналого-цифровий перетворювач (АЦП)

2.5 Контролер клавіатури і індикації

2.6 Адаптер послідовного інтерфейсу Intel 8251

Висновки


Вступ

Сьогодні розвиток комп’ютерних технологій проходить досить стрімко.

Більшість цифрових систем будується на мікропроцесорах або на мікроконтролерах. Управління різними технологічними процесами проходить за допомогою мікропроцесорних систем або технологічних операцій. Дані системи універсальні, так як вони мають дуже високу швидкодію та достатню розрядність для обробки інформації на виробництві.

Мікропроцесор являє собою функціонально закінчений пристрій, що складається із однієї або декількох програмно керуємих ВІС, та слугує для виконання операцій з обробки інформації та керування обчислювальним процесом. До числа внутрішніх схем мікропроцесора відносяться багаторозрядні регістри, рівнобіжні тракти даних, буфери для підключення зовнішніх пристроїв, багатофункціональні схеми, логічні схеми синхронізації і керування.

Центральне місце в структурі мікропроцесорних приладів займає мікропроцесор, який виконує арифметичні та логічні операції над даними, програмне керування процесом обробки інформації, а також організує взаємодію усіх пристроїв, що входять до складу системи.

Багатофункціональні схеми призначені для реалізації простих арифметичних і логічних дій над двійковими числами, що знаходяться в регістрах процесора, і пересилок даних як усередині процесора, так і між ним і зовнішніми пристроями.

Розвиток інтегральної технології і схемотехніки цифрових електронних схем призвів до появи інтегральних мікросхем із великою і дуже великою ступенями інтеграції (ВІС і ДВІС), що містять на однім кристалі (в однім корпусі) декілька десятків тисяч, а в останніх розробках сотні тисяч елементарних транзисторів. На основі таких схем створюються мікропроцесори функціонально закінчені, що управляються збереженою в пам'яті програмою, це (здебільшого малорозрядні) пристрої опрацювання цифрової інформації, виконані у виді однієї або декількох ВІС або ДВІС.

Мікропроцесорні засоби використовуються у виді мікропроцесорних комплектів інтегральних мікросхем, що мають єдине конструктивно-технологічне виконання і призначених для спільного застосування.

Мікропроцесорний комплект крім самого мікропроцесора містить мікросхеми, що підтримують функціонування мікропроцесора і розширюють його логічні можливості.

Робота мікропроцесора складається з наступних кроків:

спочатку вибирається команда, потім логічна схема її декодує, після чого здійснюється виконання цієї команди. Також відбувається обмін інформацією з зовнішніми пристроями, які приєднані до мікропроцесора.

Завданням цієї курсової роботи є створення мікропроцесорної системи обробки інформації на основі мікроконтролера ATmega128 та інших мікросхем, згідно варіанту.


1. Розробка структурної схеми системи

Структурна схема даної системи повинна мати наступні компоненти: мікроконтролер, ОЗУ, ПЗУ, АЦП, контролер клавіатури й індикації, клавіатуру та індикацію, iнтервальний таймер (згідно із завдання).

Увесь масив пам’яті поділено на дві області: ОЗП і ПЗП. В ПЗП зберігаються програми вводу і виводу інформації. В ОЗП розміщуються дані, які необхідно тимчасово зберігати у процесі обробки програми. Для забезпечення тимчасових затримок, отримання одиничних імпульсів заданої тривалості та генерації послідовностей імпульсів служить програмований iнтервальний таймер (Т).

Рис.1. - Структурна схема пристрою.

ОЗП - оперативний запам'ятовувальний пристрій

ПЗП - постійний запам'ятовувальний пристрій

МК - мікроконтролер

ККіІ - контролер індикації й клавіатури

ША - шина адреси

ШД - шина даних

ШК - шина керування

АЦП - аналого-цифровий перетворювач

T - таймер

ВЗ - вузол збросу

К - клавіатура

І - індикатор

ПІ - послідовний інтерфейс


2. Розробка І опис принципової схеми системи

Розробка принципової схеми буде проводитись кількома етапами. Буде розроблено функціональні блоки які треба буде зв`язати між собою шинами. Вибір елементів буде проводитись згідно завданню. Для побудови структурної схеми необхідно точно визначити необхідні вузли системи і зв'язку між ними.

2.1 Розробка мікропроцесорного блоку

Основний елемент системи - мікроконтролер ATmega128, ATmega128L 8-розрядний AVR-мікроконтролер з внутрісистемно програмованою флэш-пам'яттю ємкістю 128 кбайт

Відмітні особливості:

Високопродуктивний, малопотужний 8-розрядний AVR-мікроконтролер Розвинена RISC-архітектура.

133 могутніх інструкцій, більшість з яких виконуються за один машинний цикл.

32 8-разр. регістрів загального призначення + регістри управління вбудованою периферією.

Повністю статична робота.

Продуктивність до 16 млн. операцій в секунду при тактовій частоті 16 Мгц

Вбудований умножаючий пристрій виконує множення за 2 машинних циклу.

Незалежна пам'ять програм і даних.

Зносостійкість 128-ми кбайт внутрісистемно перепрограмміруємой флэш-пам'яті: 1000 циклів запис/стирання.

Опціональний завантажувальний сектор з окремим програмованим захистом.

Внутрішньосистемне програмування вбудованою завантажувальною програмою.

Гарантована двухоперационность: можливість читання під час запису

Зносостійкість 4 кбайт ЕСППЗУ: 100000 циклів запис/стирання

Вбудоване статичне ОЗУ ємкістю 4 кбайт

Опціональна можливість адресації зовнішньої пам'яті розміром до 64 кбайт.

Програмований захист коду програми.

Інтерфейс SPI для внутрішньосистемного програмування.

Інтерфейс JTAG (сумісність із стандартом IEEE 1149.1).

Граничне сканування відповідно до стандарту JTAG.

Обширна підтримка функцій вбудованої відладки.

Програмування флэш-пам'яті, ЕСППЗУ, біт конфігурації і захисту через інтерфейс JTAG.

Відмітні особливості периферійних пристроїв.

Два 8-разр. таймера-лічильника з роздільними переддільниками і режимами порівняння.

Два розширених 16-разр. таймера-лічильника з окремими переддільниками, режимами порівняння і режимами захоплення.

Лічильник реального часу з окремим генератором.

Два 8-разр. каналів ШИМ.

6 каналів ШИМ з програмованим дозволом від 2 до 16 розрядів

Модулятор виходів порівняння.

8 мультіплексованих каналів 10-розрядного аналогово-цифрового перетворення.

8 несиметричних каналів.

7 диференціальних каналів

2 диференціальних каналу з вибірковим посиленням з 1x, 10x і 200x

Двухпроводної послідовний інтерфейс, орієнтований не передачу даних в байтному форматі

Два канали програмованих послідовних УСАПП.

Послідовний інтерфейс SPI з підтримкою режимів ведучий/підлеглий.

Програмований сторожовий таймер з вбудованим генератором.

Вбудований аналоговий компаратор.

Спеціальні можливості мікро контролера.

Скидання при подачі живлення і програмована схема скидання при зниженні напруги живлення.

Вбудований RC-генератор, що калібрується.

Зовнішні і внутрішні джерела переривань.

Шість режимів зниження енергоспоживання: холостий хід (Idle), зменшення шумів АЦП, економічний (Power-save), виключення (Power-down), черговий (Standby) і розширений черговий (Extended Standby)

Програмний вибір тактової частоти

Конфігураційний біт для перекладу в режим сумісності з ATmega103

Загальне виключення підтягаючих резисторів на всіх лініях портів введення-виводу

Уведення-виведення і корпуси

53 програмуємі лінії введення-виводу

64-выв. корпус TQFP

Робоча напруга

2.7 - 5.5В для ATmega128L

4.5 - 5.5В для ATmega128

Градації по швидкодії

0 - 8 Мгц для ATmega128L

0 - 16 Мгц для ATmega128

Короткий огляд:

ATmega128 - малопотужний 8-разр. КМОП мікроконтролер, заснований на розширеній RISC-архітектурі AVR. За рахунок виконання більшості інструкцій за один машинний цикл ATmega128 досягає продуктивності 1 млн. операцій в секунду/МГц, що дозволяє проектувальникам систем оптимізувати співвідношення енергоспоживання і швидкодії.

Ядро AVR поєднує багатий набір інструкцій з 32 універсальними робочими регістрами. Все 32 регістри безпосередньо підключено до арифметико-логічного пристрою (АЛУ), який дозволяє вказати два різні регістри в одній інструкції і виконати її за один цикл. Дана архітектура володіє більшою ефективністю коду за рахунок досягнення продуктивності в 10 разів вище в порівнянні із звичайними CISC-мікроконтролерами.

ATmega128 містить наступні елементи: 128 кбайт внутрісистемно програмованої флэш-пам'яті з підтримкою читання під час запису, 4 кбайт ЕСППЗУ, 4 кбайт статичного ОЗУ, 53 лінії універсального введення-виводу, 32 універсальні робочі регістра, лічильник реального часу (RTC), чотири гнучкі таймери-лічильники з режимами порівняння і ШИМ, 2 УСАПП, двухпроводний послідовний інтерфейс орієнтований на передачу байт, 8-канальний 10-разр. АЦП з опціональним диференціальним входом з програмованим коефіцієнтом посилення, програмований сторожовий таймер з внутрішнім генератором, послідовний порт SPI, випробувальний інтерфейс JTAG сумісний із стандартом IEEE 1149.1, який також використовується для доступу до вбудованої системи відладці і для програмування, а також шість програмно вибираних режимів зменшення потужності. Режим холостого ходу (Idle) зупиняє ЦПУ, але при цьому підтримуючи роботу статичного ОЗУ, таймерів-лічильників, SPI-порту і системи переривань. Режим виключення (Powerdown) дозволяє зберегти вміст регістрів, при зупиненому генераторі і виключенні вбудованих функцій до наступного переривання або апаратного скидання. У економічному режимі (Power-save) асинхронний таймер продовжує роботу, дозволяючи користувачеві зберегти функцію відліку часу в той час, коли решта частини контроллера знаходиться в стані сну. Режим зниження шумів АЦП (ADC Noise Reduction) зупиняє ЦПУ і всі модулі введення-виводу, окрім асинхронного таймера і АЦП для мінімізації імпульсних шумів в процесі перетворення АЦП. У черговому режимі (Standby) кварцевый/резонаторный генератор продовжують роботу, а решта частини мікроконтролера знаходиться в режимі сну. Даний режим характеризується малою споживаною потужністю, але при цьому дозволяє досягти найшвидшого повернення в робочий режим. У розширеному черговому режимі (Extended Standby) основний генератор і асинхронний таймер продовжують працювати.

Мікроконтролер проводиться за технологією високощільної незалежної пам'яті компанії Atmel. Вбудована внутрісистемно програмована флэш-пам'ять дозволяє перепрограмувати пам'ять програм безпосередньо усередині системи через послідовний інтерфейс SPI за допомогою простого програматора або за допомогою автономної програми в завантажувальному секторі. Завантажувальна програма може використовувати будь-який інтерфейс для завантаження прикладної програми у флэш-пам'ять. Програма в завантажувальному секторі продовжує роботу в процесі оновлення прикладної секції флэш-пам'яті, тим самим підтримуючи двухоперационность: читання під час запису. За рахунок поєднання 8-разр. RISC ЦПУ з внутрісистемно самопрограммируемой флэш-пам'яттю в одній мікросхемі ATmega128 є могутнім мікроконтролером, що дозволяє досягти високого ступеня гнучкості і ефективної вартості при проектуванні більшості додатків вбудованого управління. ATmega128 підтримується повним набором програмних і апаратних засобів для проектування, в т. ч.: Сі-компілятори, макроасемблери, програмні отладчики/симуляторы, внутрішньосистемні емулятори і оцінні набори.

Умовне графічне позначення мікроконтроллера ATmega128 наведено на рис.2.

Рис.2 Умовне графічне позначення мікроконтроллера ATmega128

Найменування виводів ATmega128:

VCC

вивід джерела споживання

RESET

вхід системного скидання

XTAL1, XTAL2

виводи для підключення кварцевого резонатору

РА0 ÷ РА7

8-розрядний двунаправлений порт А вводу/виводу з третім станом, при роботі з зовнішньою пам’яттю являється суміщеною шиною адреси даних (адрес необхідно по сигналу ALE занести в регістр)

PB0 ÷ PB7

8 - розрядний двунаправлений порт В вводу/виводу з третім станом, який має альтернативні функції

OC0/ТО (РВО)

вход зовнішнього сигналу таймера/лічильника ТО або виход таймера/лічильника ТО в режимах Compare, PWM

OC2/Т1 (РВ1)

вхід зовнішнього сигналу таймера/лічильника Т1

AIN0 (PB2)

позитивний вхід компаратору

AIN1 (PB3)

негативний вхід компаратору

SS (PB4)

вибір підлеглого пристрою (slave) на шині SPI (послідовний інтерфейс)

MOS1 (PB5)

виход головного (master) чи вхід підлеглого (slave) пристрою даних модуля SPI

MІS0 (PB6)

вхід головного (master) чи вихід підлеглого (slave) пристрою даних модуля SPI

SCK (РВ7)

виход головного (master) чи вхід підлеглого (slave) пристрою тактового сигналу модуля SPI

PC0 ÷ PC7

8 - розрядний двунаправлений порт С вводу/виводу з третім станом, має альтернативну функцію - передає старший байт адреси (А8÷А15) при роботі з зовнішньою пам’яттю

PD0÷PD7

8 - розрядний двунаправлений порт D вводу/виводу з третім станом, має альтернативні функції

RxD0 (PD0)

вхід приймача універсального асинхронно послідовного порта (USART)

TxD0 (PD1)

виход передавальника універсального асинхронно послідовного порта (USART)

INT0 (PD2)

вхід зовнішнього переривання 0

INT1 (PD3)

вхід зовнішнього переривання 1

XCK0 (PD4)

вхід/вихід зовнішнього сигналу синхронізації (тактового сигналу USART)

OC1A (PD5)

виход А таймера/лічильника Т1 в режимі порівняння (Compare) і в режимі шин сигнала (PWM)

WR (PD6)

строб запису у зовнішнє ОЗП

RD (PD7)

строб читання із зовнішнього ОЗП

РЕ0÷РЕ2

3-розрядний двунаправлений порт Е вводу/виводу с третім сстаном, має альтернативні функції

РЕ0 (INT2)

вхід зовнішнього переривання 2

ICP1

вхід захвату таймера/лічильника Т1 (режим Compare)

РЕ1 (ALE)

строб адреси зовнішнього ОЗУ, записується адрес в регістр-заклямку

PE2 (OC1B)

вихід В таймера/лічильника Т1 в режимі Compare и PWM

GND

загальний вивід

Електричні характеристики

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Нашёл ошибку?
Или хочешь предложить что-то улучшить на этой странице? Напиши об этом и получи бонус!
Бонус рассчитывается индивидуально в каждом случае и может быть в виде баллов или бесплатной услуги от студизбы.
Предложить исправление
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5076
Авторов
на СтудИзбе
455
Средний доход
с одного платного файла
Обучение Подробнее