48180 (Приложения технологии языка программирования Паскаль в прикладной механике), страница 6

2016-07-30СтудИзба

Описание файла

Документ из архива "Приложения технологии языка программирования Паскаль в прикладной механике", который расположен в категории "". Всё это находится в предмете "информатика" из 1 семестр, которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "курсовые/домашние работы", в предмете "информатика, программирование" в общих файлах.

Онлайн просмотр документа "48180"

Текст 6 страницы из документа "48180"

Рис. 4. Геометрическая модель наклонной плоскости.

Решение. Материальная система состоит из двух масс: неподвижного колеса 1 со станиной и подвижного колеса 2. Изобразим внешние силы этой системы: Р1 – вес станины и неподвижного колеса 1, Р2 – вес подвижного колеса 2, Ry – суммарная нормальная реакция плоскости, Rx – суммарная тангенциальная реакция болтов K и L. Направим ось Oy по вертикали через точку С1, ось x – вдоль горизонтальной плоскости направо.

Запишем теорему о движении центра масс системы в проекциях на оси x и y:

Mxc=∑Fkx, Myc=∑Fky, Mzc=∑Fkz

В данной задаче

Fkx=Rx, ∑Fky=Ry-P1-P2, Rx= Mxc, (1)

Ry= Myc+P1+P2 (2)

Для определения сил Rx и Ry остается подсчитать Mxc и Myc. Вычисление Mxc и Myc ведется по формулам:

Mxc=∑mkxk, Myc=∑mkyk.

В данном случае

Mxc= m1 x1+m2 x2 и Myc= m1 y1+m2 y2, (3).

Где x1 и y1 координаты центра тяжести С1 станины механизма и неподвижного колеса 1, x2 и y2 – координаты центра тяжести С2 подвижного колеса 2.

Как видно из рис., x1=0, y1=ОС1 – постоянная, x1=C1 C2 cosw t=(r1+r2) cos w t (угол поворота кривошипа С1С2 равен φ=wt, так как по условию w постоянна), y2=ОС11С2 sinw t=ОС1+(r1+r2) sinw t.

Вычислив вторые производные x1, y1, x2, y2 по времени t находим x1=0 y1=0, x2=-(r1+r2) w2 cosw t, y2=-(r1+r2) w2 sinw t.

Внеся эти значения в формулы (3), получим:

Mxc= -m2 ( r1+ r2 )w2 соs wt, (4)

Myc= -m2( r1+ r2 )w2 sin wt (5)
После подстановки (4) в (1) и (5) в (2) находим:

Rx = -P2 /g *( r1+ r2 )w2 соs wt (6)

Ry= P1+ P2 - P2/g *( r1+ r2 )w2 sin wt (7)

Давление механизма на горизонтальную плоскость направлено противоположно реакции Ry и по модулю равно ей:

Ny=P1+ P2 -P2 /g *( r1+r2 ) w2 sin wt

Наибольшее давление:

Ny max = P1 + P2+ P2/g * (r1+ r2 ) w2

Наименьшее давление:

Ny min = Р1 + P2 - P2 /g * ( r1 +r2 ) w2

В условиях отсутствия болтов механизм может начать подпрыгивать над горизонтальной плоскостью. Это будет иметь место при Rymin<0, т.е при Р1 +P2-P2/g* (r1 + r2) w2<0, откуда следует, что угловая скорость w вращения кривошипа C1C2, при которой происходит подпрыгивание механизма, должна удовлетворять неравенству

w > g*(P1+P2) / P2(r1+r2).

Горизонтальное давление, действующее на болты, направлено противоположно Rх (см. формулу (6)), причем

Nx=P2/g*(r1 + r2)w2 coswt.

Наибольшее давление равно

Nxmax=P2/g*(r1 + r2)w2

Допустим, что под действием, силы Nx произошел срез болтов.
Тогда весь механизм начнет двигаться по идеально гладкой горизонтальной плоскости.

На рис. б изображен механизм в положении, когда точка С1 сместилась с оси у направо на х1. Так как станина механизма находится в движении относительно оси х, то х1 является функцией времени t.

Из чертежа видно, что в данном случае

х21 + С1С2 cos wt= х1 + (r1 + r2) cos wt.

Следовательно,

Mxc1х12 x2 = (m1 +m2)x1m2 (r1 + r2) w2 cos wt (8)

Теорема о движении центра масс системы материальных точек в проекции на ось х имеет вид

Мхс = Fekx

Так как после среза болтов реакция Rx отсутствует, а внешние силы Р1 Р2 и Rу перпендикулярны к оси х, то ∑Fkx = 0 и Мхс = 0. Подставив в это уравнение значение Mxс из формулы (8), получим

1 +m2) х1 -m2 (r1 + r2) w2 cos wt = 0,

т. е.

x1 = Р2/(Р1+Р2 )*(r1 + r2) w2 cos wt, (9)

Это - дифференциальное уравнение движения центра тяжести С1 станины механизма по идеально гладкой горизонтальной плоскости при отсутствии болтов. Для интегрирования уравнения (9) должны быть известны начальные условия движения точки С1. Так как в момент среза болтов точка C1 находилась на оси у и была в покое, то начальные условия движения записываются в виде:

при t= 0 x1 =0 и y1 = 0.

Проинтегрировав дифференциальное уравнение (9), получим:

x1= Р2/Р1+Р2 *(r1 + r2) w sin wt + D1

После подстановки начального условия движения t = 0 и x1 = 0 имеет D1 = 0, т. е

x1= Р2/Р1+Р2 *(r1 + r2) w sin wt

Вторично проинтегрировав, находим х1 = - Р212 *(г1 + r2) cos wt +D2. Использовав то, что при t=0, х1=0, имеем:

D2 = Р212 *(r1 + r2)

т.е. x1 = Р2 / Р12 *(r1 + r2 )(1-cos wt).

Итак, центр тяжести С1 станины механизма в случае отсутствия болтов совершает гармонические колебания с амплитудой Р212 *(r1 + r2) и круговой частотой, равной угловой скорости w вращения кривошипа С1С2.

Эту задачу можно решить также с помощью уравнения динамики переносного движения. Как известно, переносное поступательное движение системы происходит как движение абсолютное под действием всех внешних сил системы и сил инерции масс в их относительном движении, т.е.

Mwe=∑Fk+∑Jrk ,

где Fkвнешние силы, a Jrkсилы инерции в относительном движении.

В проекциях на оси декартовых координат имеем:

Мхе =∑ Fkxe+ Jrkx Муе = Fkye + Jrky,

k=1

Мzе = Fkze + Jrkz

k=1

В данной задаче колесо 2, участвуя в переносном поступательном движении вместе с колесом 1 и станиной, совершает относительное вращательное движение вокруг оси, проходящей через центр тяжести С1 колеса 1и станины перпендикулярно к плоскости ху.

Изобразив все внешние силы системы Р1, Р2, Rx и Ry (см. рис. в), добавляем центробежную силу инерции в относительном движении

Jrn = -Р2 /g*wrn. Так как точка С2 в относительном движении описывает окружность с центром С1 радиуса С1С2 = r1+ r2, то, центро­стремительное ускорение wrn, направлено от С2 к С1 и, следовательно, центробежная сила инерции в относительном движении Jrn направлена противоположно. По модулю

Jrn = -Р2 /g*wrn= Р2 /g*(r1+ r2)w2

Вращательная сила инерции в относительном движении J = -Р2 /g*wrτ равна нулю, так как кривошип вращается равномерно. Применив дифференциальные уравнения переносного поступательного движения материальной системы в проекциях на оси х и у:

Мхе =∑ Fkxe+ Jrkx , Муе = Fkye + Jrky,

k=1 k=1 k=1 k=1

получим

Mxe =Rx+Jrn coswt, Mye =Re P1P2+Jrn sinwt,

Так как хe = х1 ,ye=y1 , Jrn =P2/g*(r1+r2) w2, то

Мх1=Rx+P2/g(r1+r2)w2coswt , (10)

My1=Ry-P1- Р2 +P2/g (r1 + r2) w2 sinwt. (11)

В случае механизма, закрепленного болтами, центр тяжести С1 колеса 1 и станины неподвижен , т. е. х11=0, и дифференциальные уравнения принимают вид

Rx+P2/g(r1+r2)w2coswt =0, (12)

Ry- -P1- Рг +P2/g (r1 + r2) w2 sinwt , (13)

откуда вытекает, что проекция нормальной реакции плоскости равна

Ry = P1 - Рг +P2 /g (r1 + r2) w2 sinwt. (14)

Проекция на ось х горизонтальной силы реакции болтов равна

Rx= P2 / g (r1+r2 )w2coswt. (15)

Условие подпрыгивания определяем из (14), считая R у min отрицательным. Так как

Rymin = P1 + Рг - P2 /g *(r1 + r2) w2, а Ry min<0 , то

P1 2 -P2 /g *(r1 + r2) w2<0

откуда w>√ g*(P1+P2)/(P2(r1+r2 ))

Для определения закона движения центра тяжести CL колеса 1 и станины механизма после среза болтов надо в формуле (10) положить Rx = 0. Тогда

Мх1 = P2/g*(r1 + r2) w2 coswt ,

Т.е. приходим к уравнению (9):

x1=P2 /(P1+ P2 )*(r1 + r2 ) w2cos wt ,

решение которого было получено выше.

На основе разработанного алгоритма решения задачи по кинематике составим Паскаль – программу.

Program DINAMIKA;

Var

w,r1,r2,P1,P2,t,NxMax,Ny,x1:Real;

Const

g=9.8;

Begin

Writeln ('vvedite radius r1');

Readln (r1);

Writeln ('vvedite radius r2');

Readln (r2);

Writeln ('vvedite ves P1');

Readln (P1);

Writeln ('vvedite ves P2');

Readln (P2);

Writeln ('vvedite vremya');

Readln (t);

w:=sqrt((g*(P1+P2))/(P2*(r1+r2)));

Ny:=P1+P2-(P2/g)*(r1+r2)*w*w*cos(w)*t;

NxMax:=P2/g*(r1+r2)*w*w;

x1:=P2/P1+P2*(r1+r2)*(1-cos(w)*t);

Writeln ('w:=',w);

Writeln ('Ny:=',Ny:8:6);

Writeln ('NxMax:=',NxMax:8:6);

Writeln ('x1:=',x1:8:6);

Readln;

End.

ЗАКЛЮЧЕНИЕ

Целью курсовой работы являлась изучение полного спектра функциональных возможностей языка программирования Паскаль для решения задач прикладной механики.

Задачами данной работы являлись:

  1. Освоение полного спектра функциональных возможностей языка программирования Паскаль;

  2. Постановка и решение задач прикладной механики традиционным способом;

  3. Решение задач механики в среде языка программирования Паскаль.

Методами работы при выполнении поставленных задач:

  1. Теоретический анализ научно-технической литературы по языку программирования Паскаль;

  2. Математическое моделирование задач прикладной механики;

  3. Компьютерное решение задач прикладной механики.

На основе проведенного курсового исследования на тему «Приложения технологии языка программирования паскаль в прикладной механике» можно сформулировать следующие выводы:

1. Язык программирования высокого уровня Паскаль обладает широким спектром логических конструкций и функций, необходимых для успешного решения задач прикладной механики.

2. Информационное моделирование механических явлений средствами логики и высшей математики позволяет достаточно быстро перевести решение задач прикладной механики на уровень компьютерных вычислений посредством языка программирования Паскаль.

ЛИТЕРАТУРА

    1. Бать М.И., Джанелидзе Г., Кельзон А.С. Теоретическая механика в примерах и задачах. Т.1. М.: Просвещение, 2000.

    2. Бать М.И., Джанелидзе Г., Кельзон А.С. Теоретическая механика в примерах и задачах. Т.2. М.: Просвещение, 2000.

    3. Бочкин А. И. Методика преподавания информатики. - Минск: Высшая школа, 1998.

    4. Блашкин И.И., Буров А.А. Новые возможности Turbo-Pascal 6.0. — Спб.: Изд-во «Макет», 1992.

    5. Бородич Ю.С. и др. Паскаль для персональных компьютеров: Справ. пособие/ Ю.С.Бородич, А.Н.Вальвачев, А.И.Кузьмич. — Мн.: Выш. шк.: БФ ГИТМП «НИКА», 1991.

    6. Васильев П.П. Турбо Паскаль — мой друг: М.: Компьютер, ЮНИТИ, 1995.

    7. Великов В.П., Новая информатика в школе // Информатика и образование. – 1986. - №1.

    8. Вычислительная техника и программирование. Под редакцией А. В. Петрова М., Высшая школа, 1990.

    9. Голубева О.В. Теоретическая механика. Изд-во «Высшая школа». М.: 1968.

    10. Донцов Д.А. Самые нужные программы для Windows. Популярный самоучитель.- Спб.: Питер, 2006.

    11. Джордейн Р. Справочник программиста персональных компьютеров типа IBM PC, XT, AT: Пер. с англ./ Предисл. Н.В.Гайского. — М.: Финансы и статистика, 1991.

    12. Зозуля Ю. Компьютер на 100 % - Спб.: Питер, 2006.

    13. Зуев Е.А. Язык программирования Turbo Pascal 6.0. — М.: Унитех, 1992.

    14. Информатика. Базовый курс: Учеб. пособ. для студентов технических вузов / С.В. Симонович, Г. Евсеев, В. И. Мухаровский и др.; под ред. Симоновича – Спб.: Питер, 2005.

    15. Информатика: Учеб. пособ. для пед. спец. вузов /А.Р. Есаян, В.И. Ефимов, Л.П. Липецкая и др. - М.: Просвещение, 1991.

    16. Лапчик М. П. Методика преподавания информатики. М.: Посвещение, 2001.

    17. Левин А. Самоучитель полезных программ 3-е изд.- Спб.: Питер, 2003.Турбо Паскаль 7.0 - К.: Издательская группа BHV, 1998.

    18. Марченко А. И., Марченко Л. И. Программирование в среде Turbo-Pascal 7.0-М., Бином Универсал, К.: Юниор, 1997.

    19. Мизрохи А.М. Turbo Pascal и объектно-ориентированное программирование. — М.: Финансы и статистика, 1992.

    20. Немнюгин С.А. Turbo Pascal. Программирование на языке высокого уровня. Учебник для вузов. 2-е изд.- Спб.: Питер, 2005.

    21. Рывкин К.А. Справочник школьника по информатике. 7-11 кл. - М.: ООО Изд. дом «Оникс 21 век », 2005.

    22. Справочник по процедурам и функциям Borland Pascal with Objects 7.0. — Киев: «Диалектика», 1993.

    23. Фарафонов В.В. Турбо Паскаль 7.0. Начальный курс: учеб. пособие. - М.: Кнорус, 2006.

    24. Фёдоров А. Особенности программирования на Borland Pascal. — Киев: «Диалектика», 1994.

    25. Хершель Р. Турбо Паскаль/ 2-е изд., перераб. — Вологда: МП «МИК», 1991.

    26. POWER TOOLS PLUS. Процедуры поддержки для Turbo Pascal 4.0.: Справочное руководство пользователя. Техническая документация.

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Нет! Мы не выполняем работы на заказ, однако Вы можете попросить что-то выложить в наших социальных сетях.
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
4144
Авторов
на СтудИзбе
667
Средний доход
с одного платного файла
Обучение Подробнее