Теория по вопросам (Всё к экзамену по термеху)

2017-08-02СтудИзба

Описание файла

Документ из архива "Всё к экзамену по термеху", который расположен в категории "". Всё это находится в предмете "теоретическая механика" из 2 семестр, которые можно найти в файловом архиве МГТУ им. Н.Э.Баумана. Не смотря на прямую связь этого архива с МГТУ им. Н.Э.Баумана, его также можно найти и в других разделах. Архив можно найти в разделе "к экзамену/зачёту", в предмете "теоретическая механика" в общих файлах.

Онлайн просмотр документа "Теория по вопросам"

Текст из документа "Теория по вопросам"

Вопрос 1: Векторный способ задания движения.

Траектория определяется годографом радиус-вектора точки.

Положение точки М определено, если радиус-вектор r из центра О выражен функцией времени t r= r(t)  задан способ определения модуля вектора и его направления, если имеется система координат. Скорость и ускорение:

tr(t), тогда

(t+Δt)r(t+Δt), получаем

Δr= r(t+Δt)-r(t) 

Vср=Δr/Δt. V=lim(Δr/Δt)=dr/dt.

aср=ΔV/Δt. a=lim(Δv/Δt)=dV/dt= d²r(t)/dt².

Переход от векторной формы к координатной:

r(t)=x(t)i+y(t)j+z(t)k.

Обратно:

x=r(t)×i, y=r(t)×j, z=r(t)×k.

Вопрос 2:

Движение в декартовой системе координат.

Вектор r можно разложить по базису I, j, k: r=xi+yj+zk.

Движение материальной точки полностью определено, если заданы три непрерывные и однозначные функции от времени t: x=x(t), y=y(t), z=z(t), описывающие изменение координат точки со временем. Эти уравнение называются кинематическими уравнениями движения точки. Радиус-вектор r является функцией переменных x, y, z, которые, в свою очередь, являются функциями времени t. Поэтому производная r׳(t) может быть вычислена по правилу

dr/dt=∂r/∂x∙dx/dt+∂r/∂y∙dy/dt+∂r/∂z∙dz/dt.

Отсюда вытекает, что v=vxi+vyj+vzk.

V=√(vx²+vy²+vz²)

Ускорением точки в данный момент времени назовем вектор а, равный производной от вектора скорости v по времени. А=x׳׳(t)I+y׳׳(t)j+z׳׳(t)k.

А=√((x׳׳(t))²+(y׳׳(t))²+(z׳׳(t))²).

Вопрос 3:

Естественный способ задания движения.

Если задана траектория движения точки, выбрано начало и положительное направление отсчета и известна S=S(t) зависимость пути от времени, то такой способ задания движения точки называется естественным. V=dr/dt∙dS/dS=S׳(t)∙dr/dS=S׳(t)∙τ= =vττ. Dr/dS=τ. Τ направлена всегда в «+» направлении отсчета S.

A=dv/dt=S׳׳(t)∙τ+S׳(t)∙dτ/dt=S׳׳∙τ+ (S׳)²n/ρ. Aτ=S׳׳-тангенциальное ускорение, an=(S׳)²/ρ-нормальное (центростремительное) ускорение, ρ-радиус кривизны.

A=√((aτ)²+(an)²).

Вопрос 4:

Движение в полярной системе координат.

Ox – полярная ось, φ – полярный угол, r – полярный радиус. Если задан закон r=r(t), φ=φ(t), то задано движение в полярной системе координат. Пусть r=rºr, rº - единичный вектор, pº┴rº - единичный вектор. Тогда v=dr/dt=r׳rº+

rdrº/dt=r׳rº+rφ׳pº=vrrº+vppº. vp и vr – трансверсальная и радиальная составляющая скорости. A=dv/dt=d(r׳rº+rφ׳pº)/ dt=r׳׳rº+r׳drº/dt+r׳φ׳pº+rφ׳׳pº+rφ׳∙

dpº/dt=(r׳׳-(rφ׳)²)rº+(rφ׳׳+2r׳φ׳)pº= arrº+appº.

r²=x²+y², φ=arctg(y/x).

vr=r׳=(xvx+yvy)/r,

vp=rφ׳=(xvy-yvx)/r.

Вопрос 5:

Криволинейные координаты. Координатные линии и оси.

Устанавливают закон выбора 3 чисел q1, q2, q3 – криволинейные координаты (обобщенные координаты). Функция координат: r=r(q1,q2,q3) (из точки О).

Возьмем точку М0 с координатами q1,q10,q20.

X=X(q1,q20,q30);

Y=Y(q1,q20,q30);

Z=Z(q1,q20,q30);

r=r(q1, q2, q3)

q=q(t)

Определяют кривую (переменная только q1). Кривая – координатная линия, соответствующая изменению q1 (аналогично q2 и q3). Касательные к координатным линиям, проведенные в точке M0 в сторону возрастания соответствующих координат – координатные оси: [q1], [q2], [q3].

Вдоль каждой из координатных линий изменяется только одна криволинейная координата, а две другие сохраняют постоянные значения, соответствующие рассматриваемой точке.

H1=|∂r/∂q1|=sqrt( (∂x/∂q)^2+(∂y/∂q)^2+(∂z/∂q)^2) - kоэффициент Ламе.

e1=(∂r/∂q1)/H1.

Аналогично Н2, Н3, е2, е3.

Вопрос 6:

Скорость точки в криволинейных координатах.

При движении точки ее радиус вектор через обобщенные координаты зависит от времени:

r=r[q1(t),q2(t),q3(t)]

V=dr/dt=(∂r/∂q1)∙dq1/dt+(∂r/∂q2)∙dq2/dt+(∂r/∂q3)∙dq3/dt.

(qi)’=dqi/dt – обобщенная скорость точки.

v=(dq1/dt)H1e1+(dq2/dt)H2e2+(dq3/dt)H3e3.

v=√(dq1/dt)²H1²+(dq2/dt)²H2²+(dq3/dt)²H3². vq1=(dq1/dt)H1, vq2=(dq2/dt)H2, vq3=(dq3/dt)H3.

Пример:

1) скорость в цилиндрической системе.

Т.к. x=ρcosφ, y=ρsinφ, z=z, то

H1=1, H2=ρ, H3=1.

vρ=dρ/dt, vφ=ρdφ/dt, vz=dz/dt.

2) Движение по винтовой.

ρ=R=const, φ=kt, z=ut.

vρ=0, vφ=kR, vz=u.

Вопрос 7:
Поступательное движение твердого тела. Траектории, скорости и ускорение точек тела.

Существует 5 видов движения – поступательное, вращательное вокруг неподвижной оси, плоское (плоскопараллельное), сферическое, общий случай. Поступательное движение твердого тела – движение, при котором любая прямая этого тела при движении остается параллельной самой себе.

Траектории, скорости и ускорения любой точки тела, совершающего поступательное движение, одинаковы.

Радиус – вектор любой точки движущегося поступательно тела равен rB=rA+AB, AB=const. drB/dt=drA/dt+ dAB/dt=drA/dt => vB=vA, aB=aA.

Мгновенное поступательное движение – движение твердого тела, для которого векторы скоростей точек равны только в один момент времени.

Поступательное движение полностью характеризуется движением одной точки тела: x=f1(t); y=f2(t); z=f3(t);

Вопрос 8:
Вращение твердого тела вокруг неподвижной оси. Скорости и ускорение точек тела.

Вращение твердого тела вокруг неподвижной оси – такое его движение, при котором две точки тела остаются неподвижными в течении всего времени движения.

φ=φ(t) – угол поворота, n=1 степень свободы. Для задания вращения вокруг неподвижной оси необходимо выбрать ось, начало отсчета угла поворота и его положительное направление и задать зависимость угла поворота от времени. ω=dφ/dt – угловая скорость(рад/с). ε=dω/dt= d²φ/dt² - угловое ускорение(рад/с2). Скорость любой точки тела, не лежащей на оси v=ωxr, ускорение a=dv/dt=(dω/dt)xr+ ωxdr/dt=εxr+ωx(ωxr), где aτ=εxr.

Tga=|at| /an=E/ω2 – угол между полным ускорение и радиусом вращения.

Скорость точек тела при вращении вокруг неподвижной оси пропорциональны их кратчайшим расстояниям до этой оси.

U=h*ω – модуль скорости точки.

Частные случаи:

1) ω=const – равномерное вращение (φ=φº+ωt ).

2) ε=const – равноускоренное вращение (ω=ωº+εt, φ=φº+ωt+ εt²/2).

Вопрос 9:

Теорема о проекции скоростей двух точек твердого тела на прямую, проходящую через эти точки.

Проекции скоростей двух точек абсолютно твердого тела на прямую, проходящую через эти точки, равны между собой.

Доказательство: Для абсолютно твердого тела имеем:

VB=VA+[Q,AB]

Проектируем это равенство на прямую LM, проходящую через точки A и B.

ПрLM(VB)= ПрLM(VA)+ ПрLM([Q,AB])

ПрLM([Q,AB])=0 , так как вектор [Q,AB] перпендикулярен прямой LM.

Следовательно, ПрLM(VB)= ПрLM(VA) , что и требовалось доказать.

Вопрос 10:

Соотношение между скоростями двух точек плоской фигуры при плоском движении твердого тела.

Плоским (плоскопараллельным) назыв. такое движение, при котором все его точки перемещаются параллельно некоторой неподвижной плоскости.

Скорости точек тела при плоском движении: ; , vBA= w×BA, т.е. скорость какой-либо точки В плоской фигуры равна геометрической сумме скорости полюса А и скорости точки В при вращении плоской фигуры вокруг полюса А. Теорема: при плоском движении проекции скоростей двух точек тела на ось, проходящую через эти точки, равны между собой: vAcosa = vBcosb.

Вопрос 14:

Соотношение между ускорениями двух точек плоской фигуры при плоском движении.

Ускорение какой-либо точки плоской фигуры при плоском движении равно векторной сумме ускорения полюса и ускорения этой точки от вращательного движения плоской фигуры вокруг полюса.

vB=vA+ωxAB.

aB=dvB/dt=dvA/dt+(dω/dt)xAB+ ωx(dAB/dt)=aA+εxAB+ωx(ωx

AB).

Считая, что εхАВ=(aBA)τ;

(aBA)n=ω²∙AB, окончательно получим:

aB=aA+(aBA)τ+(aBA)n

aA – ускорение полюса;

aBA – ускорение движения вокруг полюса.

Вопрос *:
Число степеней свободы твердого тела в общем и частных случаях его движения.

n=3N-k, где n-число степеней свободы, N-число точек, к-число связей. n =6-для свободного тв.тела

Для тела, кот-е совершает сферич.дв-е достаточно 3 коор-ты, поскольку оно имеет 3 степени свободы.

Вопрос 11:
Способы определения угловой скорости и ускорения при плоском движении.

Для характеристики вращательной части плоского движения твердого тела вокруг подвижной оси, проходящей через выбранный полюс, аналогично случаю вращения твердого тела вокруг неподвижной оси можно ввести понятие угловой скорости w и углового ускорения E :

w = |dф/dt|; E = |dw/dt| = |d2ф/dt2|.

Угловая скорость и ускорение не зависят от выбора полюса.

Следовательно, для они одинаковы относительно подвижной оси, проходящей через любую точку фигуры.

При плоском движении угловую скорость и ускорение можно считать векторами, направленными по подвижной оси, перпендикулярной плоскости фигуры, и проходящей через выбранный полюс.

w и E – свободные векторы.

Вопрос 12:

Мгновенный центр скоростей. Способы нахождения.

При плоском движении твердого тела в каждый момент времени существует точка, скорость которой равна нулю. vP=vO+vPO=0, vO=ω∙OP=>OP= vO/ω.

Если мгновенный центр скоростей известен, то скорости точек плоской фигуры при ее движении в своей плоскости вычисляют так же, как и в случае вращения фигуры в рассматриваемый момент вокруг своего мгновенного центра скоростей с угловой скоростью w.

Если известны скорости двух точек плоской фигуры, мгновенный центр скоростей находится на пересечении перпендикуляров к скоростям этих точек.

Способы нахождения:

  1. на основе физического условия задачи.

  2. На основе предварительного определения скорости двух точек.

Вопрос 13:

Определение скоростей точек плоской фигуры с помощью МЦС.

Зная положение МЦС и скорость какой-либо точки фигуры, можно найти скорости всех точек плоской фигуры. Пусть P – МЦС и известна скорость какой-либо точки фигуры vА, тогда ω= vА/AP. vB= vАPB/PA. Соединив конец вектора vB с точкой Р, получим распределение скоростей вдоль отрезка РВ.

Если мгновенный центр скоростей известен, то скорости точек плоской фигуры при ее движении в своей плоскости вычисляют так же, как и в случае вращения фигуры в рассматриваемый момент вокруг своего мгновенного центра скоростей с угловой скоростью w.

Вопрос 15:

Способы определения углового ускорения при плоском движении.

т. е. ускорение какой-либо точки плоской фигуры при плоском движении равно векторной сумме ускорения полюса и ускорения этой точки при вращательном движении плоской фигуры вокруг полюса.

Ускорение точки В вокруг А состоит из касательной и нормальной составляющих:

, модули которых

Касательное ускорение направлено перпендикулярно отрезку АВ в сторону, указанную дуговой стрелкой углового ускорения.Нормальное ускорение направлено от точки В к полюсу А. Таким образом,

Обозначив угол между ускорением точки В вокруг А и отрезком АВ через "альфа", найдем:

Вопрос 16:

Мгновенный центр ускорений. Способы нахождения.

МЦУ – точка плоской фигуры, ускорение которой в данный момент времени равно нулю.

aQ=aA+aAQ=0. Угол между aQA и QA tgα=aBAτ/aBAn=ε/ω², aAQ=√aAQτ+aAQn=AQ√ ε²+ω4

- 1 способ нахождения МЦУ:

Отложить от точки А под углом α=arctg(ε/ω²) к aA отрезок AQ=aA/√(ε²+ω4 в направлении круговой стрелки ε.

- 2 способ нахождении МЦУ основан на условии задачи – если ускорение какой-либо точки по условию задачи равно нулю, то эта точка является МЦУ.

Ускорения точек плоской фигуры при плоском движении можно определить так же, как и при вращательном движении плоской фигуры вокруг мгновенного центра ускорений с угловой скоростью w и угловым ускорение E.

В общем случае мгновенный центры скоростей и ускорений являются различными точками плоской фигуры.

Вопрос 17:
Определение ускорений точек плоской фигуры с помощью МЦУ.

Если МЦУ — точку Q выбрать за полюс, то ускорение любой точки А плоской фигуры , так как aQ = 0. Тогда Ускорение аА составляет с отрезком QA, соединяющим эту точку с МЦУ, угол "альфа", откладываемый от QA в сторону, противоположную направлению дуговой стрелки углового ускорения. Ускорения точек фигуры при плоском движении пропорциональны расстояниям от МЦУ до этих точек.

Таким образом, ускорение всякой точки фигуры при ее плоском движении определяется в данный момент времени так же, как и при вращательном движении фигуры вокруг МЦУ.

1) Пусть известны направления ускорений двух точек плоской фигуры, ее угловые скорость и ускорение. Тогда МЦУ лежит на пересечении прямых линий, проведенных к векторам ускорений точек фигуры под одним и тем же острым углом: , отложенным от векторов ускорений точек в направлении дуговой стрелки углового ускорения.

2) Пусть известны направления ускорений хотя бы двух точек плоской фигуры, ее угловое ускорение = 0, а угловая скорость не равна 0.

3) Угловая скорость = 0, угловое ускорение не равно 0. Угол прямой.

Вопрос 18:

Вращение твердого тела вокруг неподвижной точки. Углы Эйлера.

Движение твердого тела, у которого одна точка неподвижна, называется сферическим. Количество степеней свободы n=3. (XA, YA, ZA).

Положение тела определяется с помощью углов Эйлера. Определение: свяжем с телом подвижную систему координат Oxyz. Плоскость xOy пересекает неподвижную плоскость x1Oy1 по прямой ОК – линии узлов.

Ψ – угол прецессии;

φ – угол собственного вращения

θ – угол нутации.

Все углы против часовой стрелке.

Если заданы функции Ψ=f1(t); φ=f2(t); θ=f3(t) то движение полностью определено.

Вопрос 19:

Скорости и ускорения точек тела при его вращении вокруг неподвижной точки.

VA=ω×rA. Пусть точка М лежит на мгновенной оси вращения.

i j k

VM=ω×rM= ωx ωy ωz

XM YM ZM

X/ωx=Y/ωy=Z/ωz – мгновенная ось вращения.

aA=dv/dt=dω/dt×rA+ω×drA/dt=ε×rA+ω×vA=aAвр+aAос.

aAвр= ε×rA – вращательное ускорение точки.

aAос= ω×vA – осестремительное ускорение точки.

Формула Ривальса: aAoc=ωvAsin(ω, vA). aвр направлен перпендикулярно плоскости (ε,r) в сторону, откуда переход от ε к r виден против часовой стрелки.

aвр направлен по перпендикуляру к плоскости (ω,v).

Скоросте точек тела пропорциональны рассточниям от этих точек до мгновенной оси.

Вопрос 20:

Скорости и ускорения точек твердого тела при его свободном движении.

Разложение общего вида движения на поступательное, связанное с точкой О и вращательное относительно О.

Переносное движение - поступательное движение вместе с полюсом. (Ve)

Относительное движение - вращательное движение относительно полюса. (Vr)

Поступательное:

X1o=f1(t); Y1o=f2(t); Z1o=f3(t).

Вращательное:

Ψ=f4(t); φ=f5(t); θ=f6(t).

Таким образом, число степеней свободы при свободном движении твердого тела равно 6.

ρA=ρо+rvA=dρ/dt+dr/dt=vo+ω×r.

aA=dvA/dt=dvo/dt+dω/dt×r+ω×dr/dt=ao+ε×r+ω²r= ao+aAвр+aAос.

1) Полюс - т. А: vB = vA + ωS*AB

2) Полюс - т. В: vA = vB + ωB*BA = vB - ωB*AB

1) + 2) : (vB + vA) = (vA + vB) + ω*AB- ωB*AB

(ωA - ωB)*AB = 0

Вопрос 21:

Сложное движение точки. Основные понятия.

Сложное движение – движение по отношению к системе координат, выбранной за основную (абсолютную).

Относительное движение – движение точки по отношению к подвижной системе координат.

Переносное движение – движение подвижной системы координат относительно неподвижной. Установление связи между этимидвижениями позволяет решать различные задачи.

Положение точки М в подвижной системе координат O'XYZ характеризует радиус-вектор с началом в точке О'. Траектория точки М в подвижной системе отсчета называется относительной траекторией и представляет собой годограф радиус-вектора Скорость движения точки М по отношению к осям подвижной системы координат называется относительной скоростью и обозначается Vr. Вектор Vr определяет скорость изменения с течением времени радиус-вектора в подвижной системе O'XYZ и поэтому выражается его относительной, или локальной, производной по времени,

Ускорение точки М в этом движении называется относительным ускорением и обозначается аr. Вектор аr характеризует скорость изменения вектора относительной скорости Vr в подвижной системе O'XYZ и поэтому выражается относительной, или локальной, производной по времени от Vr:

Движение подвижной системы O'XYZ по отношению к неподвижной Oxyz является для точки М переносным движением, а скорость и ускорение той неизменно связанной с подвижной

системой отсчета точки А, с которой в данный момент времени совпадает точка М, называют переносными скоростью и ускорением точки М и обозначают Ve и ае.

Переносные скорость и ускорение точки М определяются по формулам: , где вектора Vo' и ao' - скорость и ускорение точки О' подвижной системы координат.

Вопрос 22:

Полная и локальная производные вектора. Формула Бура.

Рассмотрим изменение вектора b(t) по отношению к двум системам координат — подвижной O'XYZ и неподвижной Oxyz.

Абсолютной, или полной, производной вектора b по аргументу t назьшается вектор определяющий изменение вектоpa b(t) в неподвижной системе Oxyz.

Относительная, или локальная, производная определяет измененине вектора b(t) в подвижной системе O'XYZ.

Формула Бура (получается из зависимости между полной и локальной производными):

Рассомтрим частные случаи.

1) угловая скорость = 0, то

2) вектор b не меняется в подвижной системе отсчета =0), то

3) , т.е. вектор b все время параллелен вектору угловой скорости ( ), то = . В частности, если , то , т.е. вектор угловой скорости изменяется одинаково для подвижной и неподвижной систем координат.

Выведение формулы Бура:

Найдем зависимость между полной и локальными производными. Если воспользоваться проекциями вектора b(t) на оси подвижной системы O'XYZ, то можно записать: , где I, J, К — орты, не изменяемые в этой системе отсчета. Поэтому локальная производная , а полная производная с учетом изменения также ортов I, J , К имеет вид: . В правой части уравнения первые три слагаемых выражают локальную производную, а производные от ортов I, J, K определяются формулами Пуассона ( ), т.е. . С учетом получаем: .

Вопрос 23:

Скорости и ускорения точки при сложном движении.

ρ = r0 + r

dp/dt = d(r0+r)/dt = dr0/dt + dr/dt

dp/dt = v0 + dr/dt + ω*r = v0 + vr + ω*r

v = v0 + ω*r + vr = ve + vr

a = dv/dt = d(v0 + ω*r +vr)/dt = a0 + (dω/dt)*r + ω*(dr/dt) + dvr/dt

dr/dt = d(~)r/dt + ω*r = vr + ω*r

dvr/dt = d(~)vr/dt + ω*vr = ar + ω*vr

a = a0 + ε*r + ω*vr + ω*vr + ω*(r*ω) + ar + ω*vr = a0 + a(вр) + ω*vr + ω*vr + а(ос) + ar + ω*vr

a = a0 + ε*r + ω*(r*ω) + ar + + 2*ω*vr, где 2*ω*vr - добавочное (поворотное) ускорение, a0 + ε*r + ω*(r*ω) - (ае) переносное ускорение.

Опр-е ускорения точки в сложном движении

VM=VO+[ ωr]+ Vr

WM=d VM/dt=(d VO/dt)+[ εr]+[ ω(dr/dt)]+d Vr/dt

dr/dt=[ ωr]+ Vr

WM=Wo+[ εr]+ [ω[ωr]]+[ ω Vr]+ [ ωVr]+Wr

d Vr/dt=[ ω Vr]+ Wr

Wk=2[ω Vr]

WM=WL+Wr+WK – кинематическая теорема Кариолиса

Абсолютное ускорение точки –это есть сумма переносного ускорения, относительного ускорения и ускорения Кариолиса

Переносное ускорение хар-ет измен-е переносной скорости в переносном движении.

Относительное ускорение хар-ет изм-е относительной скоростив в относительном движении. Ускорение Кариолиса хар-ет изм-е относительной скорости в переносном движении

Ускорение Кариолиса.

Согласно правилу векторного произведения, вектор ускорения Кариолиса ┴ пл-ти, в кот-й лежат вектора ω и Vr и направлена в ту сторону,что с конца этого вектора кратчайшее совмещение первого вектора ко второму ω к Vr кажется видным против хода часовой стрелки.

Вопрос 24:

Ускорение Кориолиса. Правило Жуковского.

Кинематическая теорема Кориолиса: абсолютное ускорение точки является векторной суммой трех ускорений - относительного, переносного и ускорения Кориолиса.

Ускорение Кориолиса равно удвоенному векторному произведению угловой скорости переносного движения на относительную скорость точки: , следовательно по модулю ускорение Кориолиса: (sin90=1).

Кориолисово ускорение обращаетсяв нуль, когда:

1) переносное движение - поступательное, т.е. омега переносное равно нулю;

2) в те моменты времени, когда в относительном движении точка останавливается, например. при изменении направления относительного движения.

Частные случаи:

А) ω0 – смена знака

Б) vr0 – относительный покой (смена знака движения).

В) sin(ω,vr)0, ω||vr.

Правило Жуковского: Кориолисово ускорение можно получить, спроецировав вектор радиальной скорости на плоскость, перпендикулярную вектору омега переносное, увеличив полученную проекцию радиальной скорости в 2*(омега переносное) раз и повернув ее на 90 градусов в направлении переносного вращения.

Вопрос 25:

Сложное вращение твердого тела вокруг пресекающихся осей.

В случае вращательных относительного и переносного движений твердого тела, когда оси их вращений пересекаются в точке О (рис. 7.2), абсолютное движение будет движением твердого тела вокруг неподвижной точки О (сферическим движением) с угловой скоростью, определяемой согласно

Нетрудно убедиться, что скорости всех точек, лежащих на линии, по которой направлен вектор угловой скорости, равны нулю. В самом деле, например, скорость находящейся на этой линии точки А тела (по свойству произведения коллинеарных векторов "омега" и r). Таким образом, прямая, на которой расположен вектор угловой скорости, является мгновенной осью вращения тела.

Скорость любой точки М тела в данном случае можно определить так: или , где

Модули составляющих, а также абсолютной скорости точки М равны модулям соответствующих векторных произведений и могут быть вычислены по формулам: , где - кратчайшие расстояния от точки М до соответствующих осей вращения.

Вопрос 26:

Сложное вращение твердого тела вокруг параллельных осей.

Если оси вращательных движений тела параллельны, то вектор результирующей угловой скорости ω тела в неподвижной системе координат будет коллинеарен ωе и ωr. Положение мгновенной оси вращения тела как оси, проходящей в данный момент времени через точку Р – МЦС в плоскости П, перпендикулярной осям вращений, можно определить из анализа: vrP=ωr×OrP, veP= ωe×OeP, Or, Oe – точки пересечений П с соответствующими осями вращения. vP=veP+vrP=0 veP= - vrP veP= vrP ωrOrP= ωeOeP.

В зависимости от взаимного расположения и численного значения векторов ωr и ωe можно выделить 3 случая сложения вращательных движений:

А) При совпадении направлений векторов ωe и ωr абсолютное движение будет плоским. Абсолютная угловая скорость в этом случае будет иметь направление, совпадающее с направлениями её составляющих, а её модуль ω=ωre. Положение точки Р можно найти из пропорции ωe/OrP=ωrOeP=ω/OeOr. Скорость любой точки тела может быть найдена по формуле v=ω×PM.

Б) При противоположных направлениях векторов ωe и ωr, когда ωr≠ωe, абсолютное движение будет плоским. Абсолютная угловая скорость имеет направление, совпадающее с направлением большей по модулю составляющей угловой скорости, а её модуль ω=|ωre|. Пропорции для нахождения точки Р имеют тот же вид, что и в пункте А.

Вопрос 27:

Пара вращений.

При противоположных направлениях векторов ωe и ωr и равенстве их модулей (ωe = ωr), если условие ωe=-ωr выполняется на отрезке времени t2-t1, абсолютное движение будет поступательным. Такой случай сложения вращательных движений называется парой вращений.

Действительно, ω=ωe+ωr=

-ωr+ωr=0, и для любой точки тела справедливы соотношения: v=ωe×r1+ωr×r2=ωe×(r1-r2)=ωe×OeOr=ωr×OrOe;

Следовательно, скорости всех точек тела в данном случае одинаковы и равны скорости поступательного движения.

Вопрос 28:

Аксиомы статики.

  1. 2 силы, приложенные к абс. твердому телу будут эквивалентны 0 тогда и только тогда, когда они равны по модулю, действуют на одной прямой и направлены в противоположные стороны.

Следствие. Сумма всех внутренних сил всегда равна нулю.

  1. Действие данной системы сил на абсолютно твердое тело не изменится, если к ней добавить или отнять систему сил, эквивалентную 0 => точку приложения силы можно переносить вдоль линии её действия.

  1. Если к телу приложены 2 силы, исходящие из одной точки, то их можно заменить равнодействующей (любую силу можно разложить на составляющие бесконечное число раз).

  2. Силы взаимодействия двух тел равны по модулю и противоположны по направлению.

  3. Механическое состояние системы не изменится, если освободить ее от связей, приложив к точкам системы силы, равные реакциям связей.

Действие связей можно заменить действием сил – реакций связи.

Вопрос 29:

Основные виды связей и их реакции.

Связи – ограничения, накладываемые на свободное твердое тело (занимает произвольное положение в пространстве). Реакция связи направлена в сторону, противоположную той, куда связь не дает перемещаться телу.

  1. Гладкая поверхность – по общей нормали.

  1. Нить – вдоль к точке закрепления.

  1. Цилиндрический шарнир (подшипник)

  1. Сферический шарнир – по любому радиусу.

  1. Подпятник, подшипник – любое направление.

  1. Невесомый стержень с шарнирами на концах. Реакция прямолинейного невесомого стержня с шарнирами на концах направлена вдоль оси стержня. В отличае от нити такой стержень может передавать как силы растяжения, так и силы сжатия.

Дополнительно:

А) Скользящий;

Б) Внутренний.

Вопрос 30:

Система сходящихся сил. Условия равновесия.

Система сил называется сходящейся, если линии всех сил пересекаются в одной точке. Попарно поочередно сложим эти силы, перенесенные к точке пересечения. Тогда R=∑Fk – главный вектор, так как R12=F1+F2, R13=R12+F3 и т. д.

Rx=∑Fix R=√(Rx²+Ry²+Rz²), cos(x,R)=Rx/R – аналитический способ задания.

Условия равновесия.

Система находится в равновесии когда главный вектор R=0.

А) Векторная форма: R=∑Fk=0;

Б) Аналитическая форма: Rx=Fkx=0, Ry=Fky=0, Rz=Fkz=0;

В) Графическая форма: замкнут многоугольник сил.

Система сходящихся сил эквивалентна одной равнодействующей силе, которую можно определить замыкающим вектором R* силового многоугольника, построенного на векторах-сипах системы сходящихся сил. Другими словами, равнодействующая системы сходящихся сил равна их геометрической сумме.

Многоугольник OABCD называется силовым многоугольником

Вопрос 31:

Алгебраический и векторный моменты силы относительно точки.

Алгебраическим моментом М=+-F*d ( пара ). Он не меняется при перемещении сил вдоль линии их действия ( ни плечо, ни направления вращения не меняются).

Векторный момент – вектор М=М(F,F*), направлен перпендикулярно плоскости пары в ту сторону, откуда видно стремление пары повернуть тело против часовой стрелки, его модуль равен алгебраическому моменту пары.
Момент относительно точки.

Алгебраическим моментом силы F относительно точки О называется взятое со знаком «+» или «-» произведение |F| на ее плечо: M0(F)=+-Fh. «+» - против часовой стрелки. Характеризует вращательный эффект F.

Свойства:

А) Не меняется при переносе точки приложения вдоль линии действия силы ( т.к. |F|sinA=const).

Б) М=0 если т.О лежит на линии действия силы. Плоскость действия М - через F и О.

Векторный момент силы F относительно точки О – вектор M0(F)=r*F (r – радиус вектор из А в О). |M0(F)=|F|*|r|*sinA=Fh.|

i j k

MO(F)= xA yA zA =>

Fx Fy Fz

  • MOx(F)=yFz-zFy

  • MOy(F)=zFx-xFz

MOz(F)=xFy-yFx

Теорема Вариньона - момент равнодействующий относительно какой-либо точки равен сумме моментов сил ее составляющих.

Вопрос 32:

Момент силы относительно оси.

Момент силы относительно оси – алгебраический момент проекции этой силы на ось, перпендикулярную оси z, взятого относительно точки A пересечения оси с этой плоскостью. Характеризует вращательный эффект относительно оси.

Mz(F)=2SΔABC=F∙h.

Если Mz(F)=0, то сила F либо параллельна оси z, либо линия её действия пересекает ось z.

Второе правило определения момента силы относительно оси: Момент силы относительно оси называется произведение проекции силы на плоскость перпендикулярную оси на плечо этой проекции относительно точки пересечения плоскости с осью.

Момент силы относительно оси Z: M0z(F) = ±hп * Fп

Частные случаи: момент силы относительно оси = 0.

а) Fп = 0

б) hп = 0 (сила пересекает ось)

Момент силы относительно оси = 0, если сила и ось находятся в одной плоскости.

Момент сил относительно декартовых осей координат (проекции момента силы на эти оси).

| i j k |

M0(F) = r * F = | x y z | = (y*Fz - z*Fy)*i + (z*Fx - x*Fz)*j + (x*Fy -

| Fx Fy Fz |

y*Fx)*k = Mox(F)*i + Moy(F)*j + Moz(F)*k

Mox(F)=y*Fz - z*Fy

Moy(F)=z*Fx - x*Fz

Moz(F)=x*Fy - y*Fx

Вопрос 33:

Связь векторного момента силы относительно точки с моментом силы относительно оси, проходящей через эту точку.

Момент силы F относительно оси z равен проекции на эту ось вектора момента силы F относительно произвольной точки О на этой оси.

Доказательство:

Пусть О – произвольная точка на оси z. Момент силы F относительно точки О перпендикулярен плоскости ОАВ

MO(F)┴(OAB). Пусть угол между MO(F) и осью z равен α. Тогда ПрzMO(F)=2SΔOAB= 2SΔOAB∙cosα => Mz(F) = |MO(F)|cosα.

Ч.т.д.

2*S(OA'B') = 2*S(OAB)*cosα

| Moz(F) | = | Mo(F) |*cosα

MCOO = проекции на эту ось векторному МСОТ

Вопрос 34:

Аналитические выражения для моментов силы относительно осей координат.

Используя связь момента силы относительно оси с векторным моментом силы относительно точки на оси, можно получить формулы для вычисления моментов относительно осей координат, если даны проекции силы на оси координат и координаты точки приложения силы.

i j k

MO(F)= xA yA zA =>

Fx Fy Fz

  • MOx(F)=yFz-zFy

  • MOy(F)=zFx-xFz

MOz(F)=xFy-yFx

По этим формулам получают необходимые знаки для MOx(F), MOy(F), MOz(F) если проекция силы F на оси координат и координаты x,y,z точки приложения силы подставлять в них со знаками этих величин.

При решении задач момент силы относительно какой-либо оси часто получают, используя его определение, т.е. проецируя силу на плоскость, перпендикулярную оси, и вычисляя затем алгебраический момент этой проекции относительно точки пересечения оси с этой плосколстью.

Вопрос 35:

Пара сил. Теорема о сумме моментов сил, составляющих пару, относительно произвольной точки.

Пара сил - система двух сил равных по модулю и противоположных по направлению.

F1 = -F2

R* = F1 - F2 = 0

AC/F2 = BC/(R*) (стремится к бесконечности)

(F1,F2) не эквивалентны 0

Момент пары сил - произведение одной из сил на ее плечо.

M(F1,F2) = M12 = ±F1*d = ±F2*d

Векторный момент пары сил.

MA = AB * F2

MA = F2 * AB * sinα = F2d

MB = BA * F1 = F1 * d

M = MA = MB = S(ACBD)

Теорема о сумме моментов сил, составляющих пару, относительно произвольной точки: Сумма моментов сил, входящих в состав пары сил относительно любой точки не зависит от ее выбора и равна моменту этой пары сил.

F1 = -F2

Mo(F2) + Mo(F1) = r2*F2 + r1*F1 = r2*F2 - r1*F2 = (r2 - r1)*F2 = AB * F2 = M(F1,F2)

Теорема Пуассо: Произвольная система сил, действующих на твердое тело, можно привести к какому-либо центру О, заменив все действующие силы главным вектором системы сил R, приложенным к точке О, и главным моментом MO системы сил относительно точки О.

Доказательство:

Пусть О – центр приведения. Переносим силы F1, F2,…,Fn в точку О: FO= F1 +F2+…+Fn= ∑Fk. При этом получаем каждый раз соответствующую пару сил (F1,F1”)…(Fn,Fn”), Моменты этих пар равны моментам этих сил относительно точки О. M1=M(F1,F1”)=r1xF1=MO(F1). На основании правила приведения систем пар к простейшему виду MO=M1+…+M2=∑MO(Fk)= ∑rkxFk => (F1, F2,…,Fn) ~ (R,MO) (не зависит от выбора точки О).

Вопрос 36:

Векторный и алгебраический моменты пары сил.

Алгебраический момент M=F∙d (пара). M=dF1=dF2=2SΔABC= Sٱ. Он не меняется при перемещении сил вдоль линии их действия (ни плечо, ни направление вращения не меняются).

Векторный момент – вектор M=M(F,F), направлен перпендикулярно плоскости пары в ту сторону, откуда видно стремление пары повернуть тело против часовой хода стрелки, его модуль равен алгебраическому моменту пары.

M(F1,F2)=BAxF1=ABxF2.

Моменты относительно точки.

Алгебраическим моментом силы F относительно точки О называется взятое со знаком «+» или «-» произведение |F| на её плечо: MO(F)=Fh=2SΔOAB MO(F). «+» - против часовой стрелки. Характеризует вращательный эффект F.

Свойства:

А) Не меняется при переносе точки приложения вдоль линии действия силы. (т.к. |F|sinα= const).

Б) Ь=0 если т. О лежит на линии действия силы.

Плоскость действия M – через F и O.

Векторный момент силы F относительно точки О – вектор MO(F)=rxF (r – радиус- вектор из А в О). |MO(F)|=|F|∙|r|∙sinα=Fh.

i j k

MO(F)= xA yA zA =>

Fx Fy Fz

  • MOx(F)=yFz-zFy

  • MOy(F)=zFx-xFz

MOz(F)=xFy-yFx

Вопрос 37:

Эквивалентность пар. Сложение пар. Условия равновесия пар сил.

Эквивалентность: А) 2 пары, имеющие равные моменты, эквивалентны. Пару сил можно перемещать, поворачивать в плоскости действия, перемещать в параллельную плоскость, менять одновременно силу и плечо.

Б) 2 пары, лежащие в одной плоскости, можно заменить на одну пару, лежащую в той же плоскости с моментом, равным сумме моментов этих пар.

M=M(R,R’)=BA×R=BA×(F1+F2)=BA×F1+BA×F2. При переносе сил вдоль линии действия момент пары не меняется  BA×F1=M1, BA×F2=M2, M=M1+M2.

СЛОЖЕНИЕ. 2 пары, лежащие в пересекающихся плоскостях, эквивалентны 1 паре, момент которой равен сумме моментов двух данных пар.

Дано: (F1, F1’), (F2, F2’)

Доказательство:

Приведем данные силы к плечу АВ – оси пересечения плоскостей. Получим пары:

(Q1,Q1’) и (Q2,Q2’). При этом M1=M(Q1,Q1’)=M(F1, F1’),

M2=M(Q2,Q2’)=M(F2, F2’).

Сложим силы R=Q1+Q2, R’=Q1’+Q2’. Т. к. Q1’= - Q1, Q2’= - Q2  R= -R’. Доказано, что система двух пар эквивалентна системе (R,R’). M(R,R’)=BA×R=BA×(Q1+Q2)= BA×Q1+BA×Q2=M(Q1,Q1’)+ M(Q2,Q2’)=M(F1,F1’)+ M(F2,F2’)  M=M1+M2.

УСЛОВИЯ РАВНОВЕСИЯ:

Система находится в равновесии, если суммарный момент всех пар сил, действующих на тело, равен нулю.

M1+ M2+…+ Mn=0.

Вопрос 38:

Лемма о параллельном переносе силы.

Сила, приложенная к какой-либо точке твердого тела, эквивалентна такой же силе, приложенной к любой другой точке тела, и паре сил, момент которой равен моменту данной силы относительно новой точки приложения.

Доказательство: пусть дана сила F. Приложим к какой-либо точке В систему F и F”.

|F|=|F|=|F|. F~(F,F,F”), т.к. (F’,F”) ~ 0, то

F ~ (F,F’,F”) ~ (F,F,F) ~ (F’,M(F,F”)).

Но M(F,F”)=BAxF=MB(F).

Получаем:

F ~ (F’,M(F,F”))

Ч. т. д.

Вопрос 39:

Теорема о приведении произвольной системы сил к силе и паре сил - основная теорема статики.

Теорема Пуассо: Произвольная система сил, действующих на твердое тело, можно привести к какому-либо центру О, заменив все действующие силы главным вектором системы сил R, приложенным к точке О, и главным моментом MO системы сил относительно точки О.

Доказательство:

Пусть О – центр приведения. Переносим силы F1, F2,…,Fn в точку О: FO= F1 +F2+…+Fn= ∑Fk. При этом получаем каждый раз соответствующую пару сил (F1,F1”)…(Fn,Fn”), Моменты этих пар равны моментам этих сил относительно точки О. M1=M(F1,F1”)=r1xF1=MO(F1). На основании правила приведения систем пар к простейшему виду MO=M1+…+M2=∑MO(Fk)= ∑rkxFk => (F1, F2,…,Fn) ~ (R,MO) (не зависит от выбора точки О).

При приведении системы сил к заданому центру возникает главный вектор R равный сумме всех сил и главный момент Мо, равный сумме моментов всех сил относительно центра приведения.

Вопрос 41:

Главный вектор и главный момент системы сил.

Пусть дана система сил (F1, F2,…,Fn).

Главным вектором системы сил называется вектор, равный векторной сумме этих сил.

R=∑Fk.

Rx=∑Fkx; cos(x,R)= Rx/R;

Ry=∑Fky; cos(y,R)= Ry/R;

Rz=∑Fkz; cos(z,R)= Rz/R;

Главный момент системы сил – сумма моментов сил относительно какого-либо полюса (центра приведения).

Lx=∑Mx(Fk)

R0 - главный вектор

L0 - главный пучок моментов сил

Главный вектор не зависит от точки приведения, а главный момент зависит.

Главный момент системы сил относительно точки О называют сумму векторных моментов всех сил системы относительно этой точки.

Вопрос 42:

Условия равновесия произвольной системы сил. Частные случаи.

R=0 и Lo=0 –ур-я равновесия. Им соотв-ют 6 скалярных алгебраических ур-1 равновесия для простр.системы сил:

Fkх=0 Fkу=0 Fkz=0 Мх(Fk)=0 Му(Fk)=0 Мz(Fk)=0 – аналитическое условие равновесия для произвольной системы сил.

Пусть все силы  пл-ти хоу, тогда: Fkх=0 Fkу=0 Мо(Fk)=0 условие равновесия для произвольной плоской системы сил.

Условие равновесия для плоской системы параллельных сил.

Пустьсилы  оси оу, тогда Fkх=0 Мо(Fk)=0

Условие равновесия для пространственной системы параллельных сил.

F1, F2, F3,…,Fn  оси оz, тогда: Fkz=0 Мх(Fk)=0 Му(Fk)=0

Вторая форма условия равновесия для пороизвольной плоской системы сил:

МА(Fk)=0 МВ(Fk)=0 МС(Fk)=0 – причем т.А, т,В, т.С  одной прямой.

- Докажем необходимость этих условий:

Допустим, система сил нах-ся в равновесии. Тогда очевидно, что  моментов всех сил относительно любой точки пл-ти=0, т.е. выполняются эти 3 условия.

- Докажем достаточность этих условий:

Доказать достоточность – это значит доказать, что при выполнении этих усл-й система нах-ся в равновесии. Доказывать будем методом от противного, поэтому предположим, что эти усл-я выполняются, но система не нах-ся в равновесии, т.е. существует R*0 эквив.данной сист.сил.

Рассмотрим усл-е первое и 2-е: для того, чтобы они выполнялись необходимо, чтобы R* проходил через т.А и т.В. Согласно третьему условию hR=0. Поскольку т.С  прямой АВ это может выполняться только в случае R*=0, т.е. наше предположение не верно и система действительно нах-ся в равновесии.

Третья форма усл-я равновесия для произвольной плоской системы сил.

Fkz=0 МА(Fk)=0 МВ(Fk)=0 – причем ось ох не перпендикулярна АВ.

- Необходимость этого усл-я очевидна, т.к.если система нах-ся в равновесии, то главный вектор и главный момент =0 относительно любой точки.

- Докажем достаточность этих условий:

Предположим, что система не нах-ся в равновесии и сущ-ет, т.е. сущ-ет R* и R* 0 является равнодействующей данной системы сил. Для того, чтобы выполнялось усл-е 2 и 3 необходимо, чтобы R* проходил через АВ.

Потребуем выполнения усл-я R*cos=0, поскольку х не перпендикулярна АВ , то R* должно быть равно 0, т.о. мы доказали, что эти усл-я достаточны для того чтобы система находилась в равновесии.

На основании двух изложенных форм ур-й равновесия для плоской системы параллельных сил можно записать еще один вид ур-я равновесия для плоской системы параллельных сил:

МА(Fk)=0 МВ(Fk)=0, АВ не параллельна F1, F2, F3,…,Fn

Вопрос 43:

Теорема Вариньона о моменте равнодействующей силы.

Если данная система сил имеет равнодействующую, то момент равнодействующей относительно произвольной точки О равен сумме моментов относительно той же точки.

Пусть система сил (F1, F2,…,Fn) приводит к равнодействующей R, проходящей через точку С пересечения линий действия сил. Возьмем произвольную точку О, тогда:

MO(R)=rxR=rx∑Fi=∑(rxFi)= ∑MOi(Fi).

Ч. т. д..

Вопрос 44:

Зависимость между главными моментами системы сил относительно двух центров приведения.

Главный момент системы сил относительно второго центра приведения О1 равен вектору главного момента системы сил относительно первого центра приведения О, плюс векторный момент главного вектора, приложенного в первом центре приведения относительно второго центра.

Доказательство:

Момент относительно любой точки O1 MO1=∑(rO1ixFi). Момент относительно первого центра приведения О MO=∑(rOixFi). Причем rO1i=O1O+rOi.

MO1=∑(O1O+rO1)xFi=O1OFi+ ∑(rOixFi)=MO+O1OxR= MO+MO1(R).

MO1= MO+MO1(R) (1)

Вопрос 45 (1):

Инварианты системы сил. Частные случаи приведения.

Инвариант системы сил – векторные и скалярные величины, не зависящие от точки приведения системы сил.

  1. Главный вектор R=∑Fi=const.

  2. Скалярное произведение главного вектора и главного момента LOR=const=FxMx+ FyMy+FzMz.

Доказательство: Умножим обе части выражения (1) на R:

MO1R= MOR+(O1OxR)R  ПрR(LO1)= ПрR(LO)= LO1R∙ ∙cos(LO1^R)= LO2Rcos(LO2^R).

LO1xRx+ LO1yRy +LO1zRz =LO2xRx +LO2yRy +LO2zRz

Приведение к простейшему виду:

  1. MO=0, R0  к равнодействующей, равной R, проходящей через О.

  2. R=0, MO0  к паре с моментом MO (независимо от О).

R0, MO0, MO┴ R  к равнодействующей, равной R, проходящей через О1: ОО1=d= |MO| / |R|. Доказательство: R и пара сил с моментом MO лежат в одной плоскости 

 силы R и R” уравновешиваются, систему можно заменить равнодействующей R’.

  1. MOR0, R0, MO0, R не перпендикулярна MO – приводится к динаме.

Доказательство: Разложим MO на 2 составляющих: M1 и M2. M2 представим в виде пары сил R’ и R”. Силы R и R” уравновешиваются, а M1 перенесем в точку O1 (свободы).

В результате получили винт R’, M1, проходящий через точку О1.

Прямая, проходящая через точку О1 – ось динамы.

Вопрос 45 (2):

Инварианты системы сил. Частные случаи приведения.

Инварианты в статике, такие величины, для рассматриваемой системы сил, которые не изменяются при изменении центра приведения.

Виды инвариантов:

1) Векторный инвариант - главный вектор системы сил (R);

2) Скалярный инвариант.

L0 * R = L01 * R

L01 = L0 + O1O * R

L01 * R = L0 * R + (O1O * R) * R = L0*R + (R * R) * O1O

L01 * R = L0 * R

Скалярное произведение главного вектора на главный момент не зависит от центра приведения.

L01 * R * cosα = L0 * R * cosα

L01 * cosα = L0 * cosα

Проекция главного момента на шлавный вектор не зависит от центра приведения.

Частные случаи приведения системы сил:

1) Приведение к паре сил.

В этом случае система сил приводится к одной паре.

R0 = R = 0

L01 = L0 + O1O * R

2) Приведение к равнодействующей.

а) Если L0 = 0, то R = R*.

Линия действия проходит через центр приведения.

б) Если R≠0 , L0≠0, но R перпендикулярен L0.

OY перпендикулярен (L0,R)

d= L0 / R = OO1

| M01(R) | = d * R = L0

Отбросим (L,M0(R)), т.к. ~0 и останется R*.

Плоская система сил всегда может быть приведена к равнодействующей.

  1. Приведение к динамическому винту (к динаме).

Динамический винт - такая совокупность главного момента и главного вектора, когда векторы параллельны.


L0 = L1 + L2

|L1| = L0 * cosα

L2 = L0 * sinα

d = L2 / R

M01(R) = O1O * R

L0 * R = L0 * R * cosα = LxRx + LyRy + LzRz

L0 = Lxi + Lyj + Lzk

R = Rxi + Ryj + Rzk

cosα = (RxLx + RyLy + RzLz)/(L0*R)

Вопрос 46:

Трение скольжения. Законы Кулона. Угол и конус трения.

Между движущимися телами в плоскости их соприкосновения возникает сила трения скольжения. Обусловлено это прежде всего шероховатостью соприкасающихся поверхностей и наличием сцепления у прижатых тел.

В инженерных расчетах обычно пользуются установленными опытным путем закономерностями, которые с некоторой степенью точности отражают действие силы трения. Эти закономерности называют законами трения скольжения (Кулона). Их можно сформулировать следующим образом:

1)Сила трения скольжения лежит в интервале 0 Fтр Fмах;

2) Сила трения скольжения не зависит от площади соприкасающихся тел, а зависит лишь от силы давления этого тела на поверхность

3)Сила тр.скольжения опр-ся по ф-ле: Fтр=fN, N-сила реакции опоры =Р, f-коэф-т трения скольжения

4)Коэф-т трения скольжения завис.от шероховатостей пов-тей трущихся тел, от температуры, от физич.состояния материала.

Тангенс угла трения равняется коэффициенту трения. Полная реакция неидеальной связи при равновесии имеет направление в пределах угла трения.

Конус трения.

Рассмотрим равновесие невесомого тела на горизонтальной шероховатой плоскости под действием наклонной силы F1, стремящейся его сдвинуть.

П оворачивая вокруг вертикали вектор силы F1 и сохраняя при этом предельное равновесие, опишем конус, называемый конусом трения. Если свойства соприкасающихся поверхностей во всех направлениях одинаковы, то угол а будет постоянным, а конус трения круговым. Конус трения обладает тем замечательным свойством, что если действующая на тело сила находится внутри него, то тело всегда будет находиться в равновесии. Этим объясняются известные явления заклинивания, или самоторможения тел.

Тело будет сдвинуто только тогда, когда > Fmax = . Предельному случаю равновесия соответствует такой угол

наклона a, при котором выполняется равенство = , или tgα = f. Если tgα<=f, то как бы не возрастала сила F1, тело сдвинуть с места невозможно. Возрастающей сдвигающей силе будет противостоять пропорционально ей увеличивающаяся сила трения .

Вопрос 47:

Трение качения. Коэффициент трения качения.

Круглое тело вдавливается в опорную поверхность (дуга CD). Трение качения – сопротивление, возникающее при качении одного тела по поверхности другого. Полная реакция N’ опорной поверхности препятствует качению.

Нам нужен момент сопротивления качению => заменим N’ и представим в виде Fтр. и N, приложенных в точке В, смещенной от центра на δ. Условия равновесия: N=P, F=Q. QmaxR=δN. Mтр.max=δ∙N. Момент сопротивления качению 0<Mк<Mк.max (не зависит от радиуса). Коэффициент трения качения δ при предельном состоянии равновесия (при Qmax) N (сила нормального давления) отстает на δ от вертикального радиуса. δ не зависит от материала, из которого сделано тело. Определяется экспериментально.

Вопрос 48:

Центр системы параллельных сил. Формула для радиус-вектора и координат центра системы параллельных сил.

На каждую частицу тела, находящегося вблизи поверхности Земли, действует направленная вертикально вниз сила, которая называется силой тяжести. Силы тяжести каждой частицы тела, строго говоря, направлены по радиусам к центру Земли и не являются параллельными. Но для тел, размеры которых малы по сравнению с размерами Земли, непараллельность настолько незначительна, что в расчетах с большой точностью силы тяжести их частиц можно считать параллельными, сохраняющими свои значения, точки приложения и параллельность при любых поворотах тела. Поэтому, обозначив силу тяжести частицы через Рк , можно, согласно формулам и , найти точку С, которая неизменно связана с телом и называется центром системы параллельных сил тяжести.

Таким образом, центром тяжести твердого тела называется центр системы параллельных сил тяжести частиц данного тела.

Дано : F1 || F2 .

R=F1+F2. MC(R)=MC(F1)+MC(F2)=0

 F1∙CA1=F2∙CA2. Повернем F1 и F2 на угол α, при этом R повернется тоже на угол α. С – центр параллельных сил.

То же самое, если сил несколько и не по одной прямой. R=∑Fi, R||Fi (точка С принадлежит R) MO(R)=∑MO(Fi), rC×R=∑(ri×Fi).

Введем единичный вектор eFk=FkeR=∑Fke.

rC×∑Fie=∑ri×(Fie). ∑FirC×e=∑Firi×e.

(∑FirC-∑Firie=0

rC=∑Firi/∑Fi.

Координаты центра системы параллельных сил:

XC=∑Fixi/R; YC=∑Fiyi/R;

ZC=∑Fizi/r

Вопрос 49:

Центр тяжести тела. Методы нахождения центра тяжести.

Центр тяжести – центр системы параллельных сил тяжести частиц тела. Его радиус-вектор rC=∑Piri/P.

XC=∑Pixi/P; Yc=∑Piyi/P; ZC=∑Pizi/P

Вес тела P=∑Pi, Pi – сила тяжести частицы.

Методы определения координат центра тяжести тела.

  1. Свойства симметрии: если тело имеет плоскость, ось или центр симметрии, то центр тяжести лежит на них.

  1. Разбиение: Если известны центры тяжести отдельных частей тела, то

rC=(V1rC1+V2rC2+…+VnrCn)/V

Отрицательные массы:

rC=VсплrC-V1rC1-…-VnrCn, где Vk, rCk – объемы и радиус-векторы пустот тела.

  1. Интегрирование: если тело нельзя разбить)

XC=(∫xdV)/V, YC=(∫ydV)/V,

ZC=(∫zdV)/V

К огда тело нельзя разбить на составные части, центры тяжести которых известны, используют метод интегрирования, являющийся универсальным.

Вопрос **:

Способы определения углового ускорения при плоском движении твердого тела.

  1. Если задана зависимость ула поворота плоского тела от времени φ=φ(t), то ε=φ׳׳(t);

  2. Если известна зависимость угловой скорости от времени ω=ω(t), то, так как ω=vτ/R, то ε=ω׳(t)=d/dt(vτ/R)=1/R∙dvτ/dt= aτ/R.

  3. Из условия задачи.

Например,

Y

B

C

A X

Если известны по модулю aA и (aBA)n, то, проецируя векторное равенство aB=aA+(aBA)τ+(aBA)n на ось Ох, получим:

εAB∙AB∙sinφ=aA+(ωAB)²∙AB∙cosφ

Вопрос ***:

Полная и локальная производные вектора. Формула Бура.

Пусть задан вектор b(t)=bxi+byj +bzk в подвижной системе отсчета. Орты i, j, k не меняются в подвижной системе отсчета. Поэтому локальная производная d~b/dt=dbx/dt∙i+dby/dt∙j+dbz/dt∙k, а полная производная с учетом изменения также ортов i, j, k примет вид: db/dt= dbx/dt∙i+dby/dt∙j+dbz/dt∙k+bxdi/dt+ bzdj/dt+ bzdk/dt.= d~b/dt+ω×(bxi+ byj+bzk)= d~b/dt+ω×b.

db/dt=d~b/dt+ω×bформула Бура.

Частные случаи:

А) ω=0db/dt= d~b;

Б) Если вектор b не меняется в подвижной системе отсчета, то db/dt= ω×b;

В) Если b все время параллелен вектору



Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Нашёл ошибку?
Или хочешь предложить что-то улучшить на этой странице? Напиши об этом и получи бонус!
Бонус рассчитывается индивидуально в каждом случае и может быть в виде баллов или бесплатной услуги от студизбы.
Предложить исправление
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5140
Авторов
на СтудИзбе
441
Средний доход
с одного платного файла
Обучение Подробнее