MAKSWELL (Вклад Максвелла в электротехнику)

2016-07-31СтудИзба

Описание файла

Документ из архива "Вклад Максвелла в электротехнику", который расположен в категории "". Всё это находится в предмете "исторические личности" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "рефераты, доклады и презентации", в предмете "исторические личности" в общих файлах.

Онлайн просмотр документа "MAKSWELL"

Текст из документа "MAKSWELL"

Министерство образования РФ

Уральский государственный технический университет

Нижнетагильский институт

Кафедра "Автоматизация технологических процессов и систем"

Реферат

по дисциплине "История электротехники"

на тему: "Вклад Максвелла
в электротехнику"

Выполнила:

студентка гр. 144 Л.В. Глушкова

Проверил: В.Л. Тимофеев

Н-Тагил

1999

Содержание

Содержание 2

Введение 3

Динамическая теория электромагнитного поля 6

Общие уравнения электромагнитного поля 12

Электромагнитные волны 14

Электромагнитная теория света 15

Библиографический список 18

Введение

Д жеймс Клерк Максвелл родился 13 июня 1831г. в Эдинбурге, в семье юриста - обладателя поместья в Шотландии. В мальчике рано проявились любовь к технике и стремление постичь окружающий мир. Большое влияние на него оказал отец - высокообразованный человек, глубоко интересовавшийся проблемами естествознания и техники. В школе Максвелла увлекала геометрия, и первой его научной работой, выполненной в пятнадцать лет, было открытие простого, но не известного способа вычерчивания овальных фигур. Максвелл получил хорошее образование сначала в Эдинбургском, а затем в Кембриджском университетах.

В 1856 г. молодого, подающего надежды ученого приглашают на преподавательскую работу в качестве профессора колледжа шотландского города Абердина. Здесь Максвелл увлеченно работает над проблемами теоретической и прикладной механики, оптики, физиологии цветового зрения. Он блестяще решает загадку колец Сатурна, математически доказав, что они образованы из отдельных частиц. Имя ученого становится известным, и его приглашают занять кафедру в Королевском колледже в Лондоне. Лондонский период (1860-1865) был самым плодотворным в жизни ученого. Он возобновляет и доводит до завершения теоретические исследования по электродинамике, публикует фундаментальные работы по кинетической теории газов.

В 1871 г. Кембридский университет предлагает своему бывшему студенту возглавить вновь образованную кафедру экспериментальной физики с условием создания при ней научно-исследовательской лаборатории. До конца жизни (Максвелл скончался 5 ноября 1879 г.) всю свою энергию ученый отдает строительству и организации физической лаборатории, названной в честь Г. Кавендиша и ставшей впоследствии одной из самых знаменитых физических лабораторий мира.

Еще в студенческие годы Максвелл знакомится с «Экспериментальными исследованиями по электричеству» Фарадея, и этот труд захватывает его. Позднее он вспоминал: «Прежде чем начать изучение электричества, я принял решение не читать никаких математических работ по этому предмету до тщательного прочтения фарадеевских «Экспериментальных исследований по электричеству». Я был осведомлен, что высказывалось мнение о различии между фарадеевским методом понимания явлений и методами математиков, так что ни Фарадей, ни математики не было удовлетворены языком друг друга». Таким образом, Максвелл решил с самого начала не поддаваться гипнозу метематически совершенных работ А.-М. Ампера, Ф. Неймана и других представителей концепции дальнодействия электромагнитных сил. Он первым осознал глубину рассуждений Фарадея и интуитивно почувствовал в его идее о силовых линиях решение Проблем электродинамики. Почти всю свою творческую жизнь Максвелл планомерно, шаг за шагом, развивал идею о поле. На первом этапе исследований он убеждается в том, что теория дальнодействия не способна последовательно и непротиворечиво объяснить электромагнитные явления. Следуя Фарадею, Максвелл разрабатывает гидродинамическую модель силовых линий. Ши­роко пользуясь механическими аналогиями, он выражает извест­ные соотношения электродинамики на математическом языке, соответствующем механическим моделям Фарадея. Этот матема­тический аппарат он заимствует из работ ирландского матема­тика У. Р. Гамильтона. Основные результаты этого этапа иссле­дований отражены в первой большой работе Максвелла «О фарадеевских линиях сил», которая была написана в 1855 г., а опубликована позднее.

В дальнейшем на смену гидродинамическим приходят модели-аналоги теории упругости. Работая с такими понятиями, как натяжение, деформация, давление, вихри, Максвелл непостижи­мым для нас образом приходит к уравнениям поля, еще не при­веденным на данном этапе в единую систему. Рассматривая электрические явления в диэлектриках, он выдвигает гипотезу о токах смещения. В общем виде высказывается мысль о связи света с электротоническим состоянием (первоначально Максвелл пользуется этим термином Фарадея для обозначения поля). Этот этап работы отражен в труде «О физических линиях сил», кото­рый печатался по частям в течение 1861—1862 гг.

Заключительный этап электродинамических исследований Максвелла характеризуется синтезом электромагнетизма и опти­ки. Ученый приходит к ясному определению электромагнитного поля как вида материи, выражая все его проявления с помощью систем из двадцати уравнений. (Впоследствии О. Хевисайд и Г. Герц приведут систему уравнений Максвелла к более просто­му виду, принятому в наши дни.) На основании своей теории Максвелл решает и конкретные задачи: определяет показатель преломления тел (n = ), рассчитывает коэффициенты само­индукции катушки и взаимной индукции двух круговых токов. Самому Максвеллу казалось, что он создал механику эфира — всепроникающей среды, которую можно принять за абсолютно неподвижную систему отсчета. Он, таким образом, стимулировал попытки ученых уловить «неподвижный эфир», предложив свою собственную идею опыта по его обнаружению. Опыт был осу­ществлен в 1887 г. А. Майкельсоном и Э. Морли и, как известно, дал отрицательный результат. Выход был найден А. Эйнштейном в специальной теории относительности, которая оказалась в пол­ном соответствии с электродинамикой Максвелла. Ученый, исхо­дя из уравнений поля, предсказал существование поперечных электромагнитных волн, распространяющихся по скоростью све­та. Этот завершающий этап был отражен в работе «Динами­ческая теория электромагнитного поля», изданной в 1864 г. Итог работы Максвелла по электродинамике подвел его знаменитый «Трактат об электричестве и магнетизме» (1873).

При жизни Максвелла его теория не получила всеобщего признания: она считалась непонятной, математически нестрогой логически необоснованной. Лишь после работ Г. Герца, доказавшего существование электромагнитных волн, и опытов П. Н. Ле­бедева, в которых было измерено давление света, предсказанное Максвеллом, его теория завоевала признание среди ученых.

Динамическая теория электромагнитного поля

Электромагнитное поле — это та часть пространства, кото­рая содержит в себе и окружает тела, находящиеся в электриче­ском или магнитном состоянии.

Это пространство может быть наполнено любым родом мате­рии, или мы можем попытаться удалить из нее всю плотную ма­терию, как в трубках Гейсслера или в других, так называемых вакуумных трубках. Однако всегда имеется достаточное количе­ство материи для того, чтобы воспринимать и передавать волно­вые движения света и тепла. И так как передача излучений не слишком сильно изменяется, если так называемый вакуум заме­нить прозрачными телами с заметной плотностью, то допускается, что эти волновые движения относятся к эфирной субстанции, а не к плотной материи, присутствие которой только в какой-то мере изменяет движение эфира.

Поэтому имеется некоторое основание предполагать, исходя из явлений света и тепла, что имеется какая-то эфирная среда, заполняющая пространство и пронизывающая все тела, которая обладает способностью приводиться в движение, передавать это движение от одной своей части к другой и сообщать это движе­ние плотной материи, нагревая ее и воздействуя на нее разнооб­разными способами.

Энергия, сообщенная телу нагреванием, должна была ра­нее существовать в движущейся среде, ибо волновые движения оставили источник тепла за некоторое время до того, как они достигли самого нагреваемого тела, и в течение этого времени энергия должна была существовать наполовину в форме движе­ния среды и наполовину в форме упругого напряжения. Исходя из этих соображений, профессор В. Томсон доказал, что эта сре­да должна обладать плотностью, сравнимой с плотностью обыч­ной материи, и даже определил нижнюю границу этой плотности.

Поэтому мы можем как данное, выведенное из отрасли науки, независимой от той, с которой мы (в рассматриваемом случае) имеем дело, принять существование проникающей среды, обладающей малой, но реальной плотностью и способностью приводиться в движение и передавать движения от одной части к другой с большой, но не бесконечной скоростью.

Следовательно, части этой среды должны быть так связаны, что движение одной части каким-то способом зависит от движе­ния остальных частей, и в то же время эти связи должны быть способны к определенному роду упругого смещения, поскольку сообщение движения не является мгновенным, а требует времени.

Поэтому эта среда обладает способностью получать и сохра­нять два вида энергии, а именно: «актуальную» энергию, завися­щую от движения ее частей, и «потенциальную» энергию, представ­ляющую собой работу, которую среда выполнит вследствие своей упругости, возвращаясь к первоначальному состоянию, после того смещения, которое она испытала.

Распространение колебаний состоит в непрерывном преобра­зовании одной из этих форм энергии в другую попеременно, и в любой момент энергия во всей среде разделена поровну, так что половина энергии является энергией движения, а другая полови­на — энергией упругого напряжения.

Среда, имеющая такого рода структуру, может быть спо­собна к другим видам движения и смещения, чем те, которые обусловливают явления света и тепла; некоторые из них могут быть таковы, что они воспринимаются нашими чувствами при посредстве тех явлений, которые они производят.

Сейчас мы знаем, что светоносная среда в отдельных слу­чаях испытывает действие магнетизма, так как Фарадей открыл, что когда плоскополяризованный луч проходит через прозрач­ную диамагнитную среду в направлении магнитных силовых ли­ний, образуемых магнитами или токами, то плоскость поляриза­ции начинает вращаться.

Это вращение всегда происходит в том направлении, в кото­ром положительное электричество должно проходить вокруг диамагнитного тела для того, чтобы образовать действующее маг­нитное поле.

Верде с тех пор открыл, что если заменить диамагнитное тело парамагнитным, например раствором треххлористого железа в эфире, то вращение происходит в обратном направлении.

Профессор В. Томсон указал, что никакое распределение сил, действующих между частями какой-либо среды, единственным движением которой является движение световых колебаний, не­достаточно для объяснения этих явлений, но что должно до­пускаться существование в среде движения, зависящего от намаг­ничивания, в дополнение к тому колебательному движению, кото­рое представляет собой свет.

Совершенно правильно, что вращение плоскости поляризации вследствие магнитного воздействия наблюдалось только в сре­дах, обладающих заметной плотностью. Но свойства магнитного поля не так уж сильно изменяются при замене одной среды дру­гой или вакуумом, чтобы допустить, что плотная среда делает нечто большее, чем простое изменение движения эфира. Поэтому имеем ставтся вопрос: не проис­ходит ли движение эфирной среды везде, где бы ни наблюдались магнитные эффекты? Предполагается, что это движение является движением вращения, име­ющим своей осью направление магнитной силы.

Рассмотрим другое явление, наблюдаемое в электромагнитном поле. Когда тело движется, пересекая линии магнитной силы, оно испытывает то, что называют электродвижу­щей силой; два противоположных конца тела электризуются противоположно, и электрический ток стремится пройти через тело. Когда электродвижущая сила достаточно велика и действу­ет на некоторые химически сложные тела, она их разлагает и за­ставляет одну из компонент направляться к одному концу тела, а другую — в противоположную сторону.

В данном случае имеется очевидное проявление силы, вызы­вающей электрический ток вопреки сопротивлению и электризу­ющей концы тела противоположным образом. Это особое состоя­ние тела поддерживается только воздействием электродвижущей силы, и, как только эта сила устраняется, оно стремится с рав­ной и противоположно направленной силой вызывать обратный ток через тело и восстановить его первоначальное электрическое состояние. Наконец, если эта сила достаточно велика, она раз­лагает химические соединения и перемещает компоненты в двух противоположных направлениях, в то время как их естественной тенденцией является тенденция к взаимному соединению с такой силой, которая может породить электродвижущую силу обратно­го направления.

Эта сила, следовательно, является силой, воздействующей на тело вследствие его движения через электромагнитное поле или вследствие изменений, возникающих в самом этом поле. Действие этой силы проявляется или в порождении тока и нагревании тела, или в разложении тела, или если она не может сделать ни того, ни другого, то в приведении тела в состояние электрической поляризации — состояние вынужденное, при котором концы тела наэлектризованы противоположно и от которого тело стремится освободиться, как только будет удалена возмущающая сила.

Согласно предлагаемой теории, эта электродвижу­щая сила является силой, возникающей при передаче движения от одной части среды к другой, так что именно благодаря этой силе движение одной части вызывает движение другой. Когда электродвижущая сила действует вдоль проводящего контура, она производит ток, который в том случае, если он встречает сопротивление, вызывает постоянное превращение электрической энергии в тепло; последнее уже нельзя восстановить в форме электрической энергии каким-либо обращением процесса.

Но когда электродвижущая сила действует на диэлектрик, она создает состояние поляризации его частей, которое аналогич­но поляризации частей массы железа под влиянием магнита и которое, подобно магнитной поляризации, может быть описано как состояние, в котором каждая частица имеет противополож­ные концы в противоположных состояниях.

В диэлектрике, находящемся под действием электродвижущей силы, мы можем представлять, что электричество в каждой мо­лекуле так смещено, что одна сторона молекулы делается поло­жительно наэлектризованной, а другая — отрицательно наэлек­тризованной, однако электричество остается полностью связан­ным с молекулами и не переходит от одной молекулы к другой. Эффект этого воздействия на всю массу диэлектрика выражается в общем смещении электричества в определенном направлении. Это смещение не равноценно току, потому что, когда оно дости­гает определенной степени, то остается неизменным, но оно есть начало тока и его изменения образуют токи в положительном или отрицательном направлениях сообразно тому, увеличивается или уменьшается смещение. Внутри диэлектрика нет признаков ка­кой-либо электризации, так как электризация поверхности любой молекулы нейтрализуется электризацией поверхности молекулы, находящейся в соприкосновении с ней. На граничной поверхнос­ти диэлектрика, где электризация не нейтрализуется, мы обна­руживаем явления, указывающие на положительную или отри­цательную электризацию этой поверхности.

Отношение между электродвижущей силой и электрическим смещением, которое она вызывает, зависит от природы диэлек­трика, причем та же самая электродвижущая сила обычно про­изводит большее электрическое смещение в твердых диэлектри­ках, например в стекле или сере, чем в воздухе.

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Нашёл ошибку?
Или хочешь предложить что-то улучшить на этой странице? Напиши об этом и получи бонус!
Бонус рассчитывается индивидуально в каждом случае и может быть в виде баллов или бесплатной услуги от студизбы.
Предложить исправление
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5076
Авторов
на СтудИзбе
455
Средний доход
с одного платного файла
Обучение Подробнее