49159 (Створення гри типу DOOM, Wolf 3D)

2016-07-31СтудИзба

Описание файла

Документ из архива "Створення гри типу DOOM, Wolf 3D", который расположен в категории "". Всё это находится в предмете "информатика" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "рефераты, доклады и презентации", в предмете "информатика, программирование" в общих файлах.

Онлайн просмотр документа "49159"

Текст из документа "49159"

Створення гри типу DOOM, Wolf 3D

План

  1. Створення простого тривимірного зображення кадру гри. Основи.

  2. Метод визначення швидкості роботи гри.

  3. Додаткові можливості.

Система розробки: Pentium 150Mhz, 32M RAM, 1G HDD, S3 SVGA, Borland C++ 3.1

Мета: Створити гру, що зовнішньо схожа на Wolfenstein 3D

Методы: Гра створена за методом, що зветься Ray Casting (проведення променя) — процес зображення тривимірного світу за двовимірною інформацією. Ось основні принципи цього методу:

1. На основі двовимірної карти, що схожа на папір в клітинку, будується лабіринт, що складається з замальованих та чистих клітинок.

2. Мапа створена з квадратів фіксованого розміру (в нашому випадку — 64 x 64), що дозволяє кожному об’єкту (гравцю) пересуватися на 64 одиниці в будь-якому напрямі до переходу на інший квадрат. Весь лабіринт складається з таких квадратів, що утворюють двовимірний масив.

3. Гравець визначається як місце на цій мапі, що має три характеристики:

    • координату X

    • координату Y

    • кут зору

  1. Так як ми знаємо, де знаходиться гравець та те, в який бік він дивиться, ми можемо взнати, що він бачить в цей момент. Для початку нам треба вирішити яке поле зору має гравець. Нехай це буде 60, для того щоб зображення було найбільш реалістичним. Це значить, що гравець буде бачити всі предмети та стіни на 30 ліворуч та на 30 праворуч.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

5. Тепер ми отримали поле зору, що включає в себе стіни попереду гравця при данному куті зору.

6. Ось що має бачити гравець в цьому випадку.

7. Так як же все ж таки отримати таке тривимірне зображення з двовимірної мапи? Просто вираховуючи висоту стін як функцію від відстані. Маючи поточні координати гравця, координати стіни та, використовуючи тригонометрію, ми можемо визначити відстань між гравцем та стіною. Проблема в тому, щоб виконати всі ці розрахунки настільки швидко, щоб гра виглядала реалістично. Але цим ми займемося пізніше. Зараз нехай спрацює простий метод визначення відстані до стіни. При цьому потрібно пам’ятати, що ми проводимо промінь для кожного стовпчика пікселей екрану, що для режиму VGA 13h (320x200x256) дає нам 320 стовпчиків по 200 пікселів. Тобто, 320 променів буде проведено щоб намалювати 1 кадр.

8. Почнемо з заповнення початкових значень для гравця. Як ми вже сказали, кожний квадрат має розміри 64x64 одиниці. Нехай гравець стоїть в клітинці (1, 1) десь на ¾ клітинки згори та на ¼ клітинки зліва. Значить координати гравця десь приблизно (80, 112) (64 + 64 * ¼, 64 + 64 * ¾). Початковий кут зору буде 0. Так як ми будемо використовувати тригонометричні функції з бібліотеки мови C, ми будемо використовувати координатну систему, де кут збільшується за годинниковою стрілкою.

9. Тому, як було сказано в пункті 4, ми починаємо проводити промені від 30 зліва від нашого кута зору (=0) (або з 330) до 30 справа від нашого кута зору (або до 30). Можна побачити правильний трикутник від того місця де стоїть гравець до точки з кутом 330.

; ; ;

10. Зараз ми можемо намалювати (вигадану) лінію від гравця до якої-небудь точки на куті 330. Але наскільки ж довгою має бути ця лінія? Настільки, щоб можна було визначити що ми натрапили на стіну або вийшли за межі нашого лабіринту. Нехай наш лабіринт має розміри 10x8 (x*y). Тоді у нас 80 квадратів. Тоді максимальна ширина (довжина) нашого лабіринту —64 * 10 = 640 на 64 * 8 = 512. Максимальна відстань, на яку нам потрібно пускати промінь — , , що дорівнює 819.5999 або 820 одиниць. Що ж, 820 це максимальна відстань, на яку ми можемо пустити промінь, переглядаючи по дорозі чи не натрапили ми на стіну або чи не вийшли ми за межі лабіринту. Ми звели проведення променя до малювання лінії. А для малювання лінії у нас є алгоритм Брезенхама. Нам треба тільки визначити координати кінцевих точок лінії. Якщо ми маємо початкові координати гравця (X, Y), тоді використаємо вирази для точок кола щоб взнати кінцеві координати.

Використавши числа з пунктів 8 та 10 отримуємо:

що дає: . Передавши параметри (80, 112, 790, -298) в процедуру проведення лінії, що перевіряє зіткнення з стінами. Для кожної точки вздовж лінії ми визнячаємо координати на нашій карті так:

Поглянувши знову на малюнок 1 ми бачимо що наше перше зіткнення з стіною відбувається у клітинці (2, 0). Тепер визначимо відстань до цієї стіни. Назвемо точку перетину з стіною W, щоб не сплутати її з точкою кінця відрізка. Відстань визначається так: , . З малюнку видно, що стіна знаходиться десь в (128, 128) в квадраті (2, 0) тому: , з чого виплаває, що відстань = 50.596 або приблизно 51 одиниці. Знаючи відстань ми, заглянувши в таблицю висот, можемо взнати висоту стіни і намалювати одну горизонтальну лінію на екрані визначеної висоти. Продовжуємо цей процес для всіх колонок на екрані (320), де кожна колонка відповідає віддалі до стіни, і заповнюємо весь екран. Як ви мабуть і здогадуєтесь, ми не будемо зменшувати наш кут по цілому градусу, а по що дорівнює 0,1875. 320 стовпчиків по 0,1875 дає нашого поля зору.

Таблиця висот будується так: для кожної з можливих відстаней висота=відстань/С, де С — коефіцієнт, що вибирається пробним шляхом.

Так ми малюємо один кадр нашої гри. Він залежить від двох параметрів — координат гравця та його кута зору. Змінюючи ці параметри та перемальовуючи екран знову можна отримати те що бачить гравець з новими координатами та/або кутом зору. А самі зміни координат та кута відбуваються в залежності від тих клавіш, що їх натиснув гракець на клавіатурі, або від перевування мишки. Чим більше кадрів малювати за одиницю часу, тим більш плавною і реалістичною буде гра.

Коротше кажучи, ось основні кроки:

  1. Візьміть кут зору гравця і відніміть 30 від нього щоб отримати напрям першого променя.

  1. Вирахуйте координати кінцевої точки використовуючи початкові координати гравця, напрям променя та максимальну відстань, на яку проводиться промінь.

  2. Використовуючи алгоритм лінії Брезенхама, в кожній точці лінії перевіряти, чи не втикнулися ми зі стіною і чи не вийшли ми за межі лабіринту. Якщо знайшли стіну, повернути координати (Wx, Wy) точки перетину.

  1. Використувуючи координати грвця та координати перетину з стіною визначити відстань до стіни.

  1. Використувуючи відстань, визначити з таблиці висот висоту стіни яку треба намалювати.

  1. Додати 0,1875 до кута проведення променя і знову пройти пункти 1-6 доки не намалюємо всі 320 ліній екрану.

11. Описаний вище алгоритм дає більш-менш нормальний результат, але має декілька недоліків:

  1. Швидкість. Проведення 320 ліній для кожного кадру просто дуже повільно. На екрані може бути видно як перемальовується кожен кадр зліва направо.

  1. Перетини. Немає простого способу визначити з якою саме чистиною стіни перетнувся наш промінь, а тому важко на стіни накласти текстуру.

Для точнішого визначення швидкості роботи описаного алгоритму (в кадрах за секунду), були написані відповідні процедури. Ось основна схема визначення кількості кадрів за секунду.

long getTime() {

return peek(0, 0x46E)*65535+peek(0, 0x46C);

int TimeCounter=0;

void main(void) {

long RememberTheTime=getTime();

int FramesPerSecond=0;

while (TRUE) {

TimeCounter++;

if (getTime()-RememberTheTime>=18) {

FramesPerSecond=TimeCounter;

TimeCounter=0;

RememberTheTime=getTime();

}

}

}

Функція getTime() повертає поточний час у вигладі довгого цілого. Це число збільшується на одиницю приблизно 18 разів на секунду. TimeCounter показує скільки разів виконався цикл. У функції main() організован основний цикл програми, що збільшує TimeCounter на одиницю. На початку роботи програми час, що повертається функцією GetTime запам’ятовується у змінній RememberTheTime. Але якщо в ході роботи циклу пройшла 1 секунда, то FramesPerSecond буде мати значення кількості проходів циклу за секунду. При умові що за один цикл програми малюється один кадр, то FramesPerSecond можна вважати кількістю кадрів за секунду.

А ось що можна зробити для покращення та прискорення цієї гри.

  1. В першу чергу потрібно звільнитися від чисел з точкою, що плаває. Використавши числа з фіксованою точкою ми прискоримо весь алгоритм. Число з фіксованою точкою приблизно дорівнює числу з плаваючою точкою побітово зсунутим дещо вліво, щоб зберігати дробову частину. a = long( (float)b << 8). Такі числа можна складати та віднімати без перетворень. Щоб ділити та множити потрібно виконати побітові зсуви — (a >> 8) * (b >>8).

  1. По-друге, потрібно всі значення, які можна, вирахувати заздалегідь і помістити в змінні та масиви. Наприклад значення сінусів та косінусів можна занести в таблицю з 360 елементів, що відповідають кожному з 360.

  1. Накладання текстури відбувається за методом інтерполяції. Знаючи верхню та нижню точки, можна пройти в циклі по всім точкам від верхньої до нижньої і взнати відповідні точки в текстурі. Але більш докладне пояснення виходить за рамки даного документу.

  1. Робота з монстрами майже нічим не відрізняється від роботи з самим гравцем. Він має координати свого положення і кут зору. Переміщується до гравця якщо має досить енергії і стріляє через рандомізований проміжок часу. Якщо енергії недостатньо, втікає.

Список літератури

1. Lary Myers. Animation Construction Kit 3D

2. Sebastien Loisel. Zed3D. A compact reference for 3D computer graphics.

  1. Дейв Робертс. Программирование игрушек. Основы.

  2. Mark Feldman. Brezenham’s Line and Circle Algorithms.

  3. Sebastien Loisel. A tutorial for 2D and 3D vector and texture mapped graphics. Version 0.60

  4. Chris. Egerter. Texture mapped polygons.

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Нашёл ошибку?
Или хочешь предложить что-то улучшить на этой странице? Напиши об этом и получи бонус!
Бонус рассчитывается индивидуально в каждом случае и может быть в виде баллов или бесплатной услуги от студизбы.
Предложить исправление
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5057
Авторов
на СтудИзбе
456
Средний доход
с одного платного файла
Обучение Подробнее