Популярные услуги

Курсовой проект по деталям машин под ключ
КМ-4. Типовое задание к теме косвенные измерения. Контрольная работа - любой вариант за 5 суток.
КМ-3. Задание по Matlab/Scilab. Контрольная работа - любой вариант за 3 суток!
КМ-3. Типовое задание к теме прямые измерения. Контрольная работа (ИЗ1) - любой вариант!
Курсовой проект по деталям машин под ключ в бауманке
ДЗ по ТММ в бауманке
Все лабораторные под ключ! КМ-1. Комбинационные логические схемы + КМ-2. Комбинационные функциональные узлы и устройства + КМ-3. Проектирование схем
Любая лабораторная в течение 3 суток! КМ-1. Комбинационные логические схемы / КМ-2. Комбинационные функциональные узлы и устройства / КМ-3. Проектирование схем
Допуски и посадки и Сборочная размерная цепь + Подетальная размерная цепь
ДЗ по матведу любого варианта за 7 суток

Полевые транзисторы

2021-03-09СтудИзба

3. Полевые  транзисторы

( или униполярные, или  канальные  транзисторы)

Биполярные транзисторы управляются током, полевые транзисторы управляются напряжением. Различают следующие типы полевых транзисторов: полевые транзисторы с управляющим p-n переходом; полевые транзисторы с изолированным затвором.

      

3.1. Полевой транзистор с p-n переходом

Простейший полевой транзистор с управляющим p-n переходом представляет собой тонкую пластину полупроводникового материала (кремния) с одним p-n переходом в центральной части и с омическими контактами по краям. Его структура показана на рис. 43. Обозначение выводов: С-сток, З-затвор, И-исток. Обозначение на схеме представлено на рис. 44. Изображенный на рис.43 и 44 транзистор называется полевой транзистор с p-n переходом и  каналом n-типа.

В зависимости от электропроводности полупроводника канал может быть n-типа или р-типа. Если подключить к каналу напряжение, то через пластину полупроводника между омическими контактами потечет ток. Ток через канал образуется за счет основных носителей. При n-канале - за счет электронов.

Омический контакт (электрод), от которого течет ток, называется истоком,  а омический контакт, к которому он направлен, – стоком. Электрод, используемый для управления эффективной шириной канала, называется  затвором. Межэлектродные напряжения сток – исток Uси и затвор – исток Uзи отсчитывают относительно истока. Управляющей цепью является цепь затвор-исток (З-И). Управляемой цепью является С-И, в которой регулируется ток.

Рекомендуемые материалы

С помощью Uзи регулируется ширина канала, его проводимость, ток через него. Управление током стока осуществляется путем подачи Uзи со знаком, обратным направлению проводимости p-n перехода. При подаче отрицательного напряжения на затвор в области p-n перехода образуется обедненный слой (как у диода, смещенного в обратном направлении). Чем шире обедненный слой, тем уже канал, по которому могут проходить электроны от истока к стоку, т.к. обедненный слой, лишенный свободных носителей, ведет себя как изолятор, имеющий очень большое сопротивление.

Можно подобрать такое напряжение на затворе (напряжение отсечки тока стока Uзи отс<0), при котором токопроводящий канал будет полностью ликвидирован, т.е. перекрыт и протекание тока через пластину невозможно. Толщина токопроводящего канала при отсутствии стокового напряжения (Uси=0) определяется формулой:

h’=h(1–( Uзи/Uзи отс)1/2),

где h – технологическая толщина канала.

Сопротивление канала:

Rк=Rко/(1–( Uзи/Uзи отс)1/2),

где Rко – сопротивление канала при Uзи=0.

Т.к. управление током через канал производится обратно включенным p-n переходом, то сопротивление участка затвор-исток оказывается очень большим. Оно соответствует сопротивлению полупроводникового диода, включенного в обратном направлении, что выгодно отличает данный полупроводниковый прибор от биполярного транзистора.  Управление толщиной канала осуществляется обратным напряжением  Uзи или, в конечном итоге, поперечным относительно направления тока через канал электрическим полем, что нашло отражение в названии – полевой транзистор. Применять прямое включение управляющего p-n перехода нецелесообразно, т.к. при этом резко возрастает ток через него и возрастает выделяемая на переходе ЗИ мощность (т.е. нагрев перехода).

В отличие от биполярного транзистора ток, текущий через полевой транзистор, образуется только основными носителями, поэтому такой транзистор называют еще униполярным. Он в меньшей степени подвержен влиянию температуры и радиации, т.к. этими факторами определяется концентрация неосновных носителей.

Полевой транзистор с p-n переходом  и  каналом p-типа показан на рис. 45.

3.1.1. Входные и выходные характеристики полевого

транзистора с p-n переходом и каналом n-типа

 Статические характеристики полевого транзистора с p-n переходом и каналом n-типа приведены на рис. 46. Характеристики Ic(Uси) называются выходными стоковыми характеристиками, характеристика Ic(Uзи) называется входной  характеристикой управления.

В общих чертах стоковые характеристики полевого транзистора с p-n переходом похожи на коллекторные характеристики биполярного транзистора: оба транзистора представляют собой источник фиксированного тока на большей части диапазона рабочих напряжений. Другими словами, если напряжение затвор-исток Uзи зафиксировать на определенном уровне, то, начиная с некоторых значений, увеличение напряжения сток-исток Uси оказывает незначительное влияние на ток стока Ic. Это относится  к области выходных характеристик на рис. 46 справа от пунктирной линии – это область насыщения.

Когда напряжение Uси начинает расти от нуля (для транзистора с каналом n-типа), канал ведет себя вначале как резистор, сопротивление которого определяется шириной канала, оставленного в кристалле обедненным слоем. Когда   достигает нескольких сот милливольт, начинает сказываться обратное смещение на затворе и обедненный слой расширяется в основном у стока до тех пор, пока не останется очень узкий проводящий канал. Наибольшее сечение канала находится возле истока, где Up-n=Uзи, а наименьшим – возле стока, где обратное (отрицательное)  напряжение p-n перехода равно Up-n=Uзи-Uси (следует помнить, что Uзи<0, а Uси>0).

Дальнейшее увеличение Uси приводит к еще большему сужению канала (увеличению его сопротивления), почти точно уравновешивающему увеличение Uси. При этом в самом узком месте возле стока всегда остается малое сечение канала, пропускающее ток, т.е. происходит ограничение тока канала. Это, так называемое, насыщение канала. Напряжение, при котором оно наступает, называется напряжением насыщения Uси нас. При этом ток равен значению Ic нач. Так же, как и в случае биполярного транзистора, в области насыщения имеется небольшой положительный наклон.

Описанные процессы отражены на выходных характеристиках на рис. 46.  Из условия Up-n=Uзи отс=Uзи-Uси нас находим:

Uси нас=Uзи-Uзи отс=|Uзи отс|-|Uзи|.

Выражение для тока стока имеет вид:

Iс=Ic нач(1–Uзи/Uзи отс)2.

Это – парабола, график которой является входной характеристикой и имеет вид:

                  

Если в полевом транзисторе при Ucи>Ucи нас изменять напряжение на затворе от 0 до |Uзи|>|Uзи отс|, то толщина суженного участка канала будет уменьшаться до нуля и ток канала станет равным нулю, а в цепи стока протекает некоторый малый остаточный ток (ток отсечки). Он состоит в основном из обратного тока p-n перехода, протекает от стока на затвор и пренебрежительно мал (обычно имеет значение несколько микроампер).

При большом напряжении Ucи, когда Ucи+|Uзи|>Uпроб в обратновключенном управляющем p-n переходе вблизи стока возникает электрический (лавинный) пробой и ток стока резко возрастает. Этот ток замыкается через электрод затвора.

На рис.46 при Uзи=0 ,  Iс=Icнач=Imax;  при  |-Uзи|>|-Uотс|, Iс=0. Здесь Icнач – начальный ток стока; напряжение Uотс - напряжение отсечки. Uотс=(0,3…10)В, Iснач=(1…20)мА.

На выходных характеристиках также может быть проведена нагрузочная прямая, как и у биполярных транзисторов.

Типы транзисторов с p-n переходом: КП103 – с каналом p-типа; КП 302, КП 303, КП307 – с каналом n-типа.                                                                                                                                                                                                                                                                                                          

Полевые транзисторы могут работать как в усилительном, так и в ключевом режимах.

 

3.1.2. Схема   ключа на полевом  транзисторе с p-n переходом

 

Схема  и  диаграммы   показаны на рис. 47, 48.

Состояние I - ключ разомкнут (транзистор не проводит). Cостояние II - ключ замкнут (транзистор проводит). Такой ключ может быть применен в генераторе пилообразного напряжения для периодического сброса напряжения на конденсаторе.

3.2. Полевые транзисторы с изолированным затвором

В отличие от полевых транзисторов с управляющим p-n переходом в МОП-транзисторах электрод затвора изолирован от канала слоем диэлектрика толщиной 0,2…0,3 мкм, в качестве которого обычно применяют окисел (двуокись кремния SiO2).

Структура такого транзистора представлена на рис. 49. Если в этой структуре окисел заменить на p -слой, то мы возвратимся к транзистору с p-n переходом. Транзистор со структурой, показанной на рис.49, называется МОП-транзистор: М-металл, О-окисел, П-полупроводник. Английское название транзистора: MOSFET-Metal-Oxide-Semiconductor-Field-Effect-Transistor. Вывод П - это подложка, т.е. слой, на который наложен слой n -канала. Вывод подложки снабжают стрелкой, указывающей на тип проводимости канала. Обычно подложку присоединяют к истоку. Причем, иногда это делается внутри транзистора. Ее можно оставить и не присоединенной.

МОП-транзисторы имеют две конструктивные разновидности ­– с встроенным каналом и с индуцированным каналом. Обозначение на схеме транзистора с встроенным каналом n-типа показано на рис. 50. Таким транзистором является  КП 305X. Х- буква, характеризующая параметры. Обозначение транзистора с каналом p-типа, приведено на рис. 51.

При работе с МОП-транзисторами необходимо соблюдать меры предосторожности. Изоляция затвора в МОП-транзисторе приводит к тому, что такой транзистор очень чувствителен к статическим зарядам, из-за которых может появиться большой потенциал на затворе и произойти пробой изоляции. Поэтому МОП-транзисторы поставляются с выводами, замкнутыми между собой временной перемычкой. Лучше не удалять эту перемычку, пока транзистор не впаян в схему. У некоторых МОП-транзисторов имеются встроенные защитные диоды и поэтому они не боятся статического электричества. 

3.2.1. Входные и выходные характеристики МОП - транзистора с встроенным каналом n -типа (КП  305)

Характеристики показаны на рис. 52. Недостаток транзистора с такими характеристиками: Uзи=0, а прибор проводит, т.е. у рассмотренных ранее транзисторов при Uзи=0 существует ток стока. Иногда желательно, чтобы  при Uзи=0, Iс=0. Этим свойством обладают полевые транзисторы с индуцированным  (наведенным) каналом.

3.2.2. МОП - транзисторы с индуцированным каналом

Предыдущие МОП-транзисторы имели встроенный канал (p или n-типа). Эти транзисторы при Uзи=0 проводят. В полевом транзисторе с индуцированным каналом при Uзи=0 ток отсутствует.

Структура транзистора с индуцированным каналом p-типа представлена на рис. 53. В теле подложки n-типа имеются две сильно легированные области с противоположным относительно подложки типом проводимости (p-типа). Одна из этих областей используется как исток И, другая – как сток С. Электрод затвора З изолирован от полупроводниковой пластины слоем диэлектрика (SiO2) толщиной 0,2…0,3 мкм. Исток, сток и подложка имеют контакты с соответствующими полупроводниковыми областями и снабжены выводами.

Т.к. высоко легированные р-области истока и стока с полупроводником подложки n-типа образуют p-n переходы, то при любой полярности напряжения сток-исток один из этих переходов оказывается включенным в обратном направлении и препятствует протеканию тока канала, следовательно, между истоком и стоком отсутствует токопроводящий канал.

При подаче отрицательного напряжения на затвор его отрицательный потенциал отталкивает электроны в подложке n-типа от затвора. При некотором отрицательном пороговом напряжении на затворе относительно истока и подложки Uзи пор<0 в подложке n-типа возникает обедненный основными носителями (электронами) инверсный поверхностный слой р-типа, образованный дырками. Этот слой соединяет р-области истока и стока и формирует между ними токопроводящий канал p-типа. Этот канал и обеспечивает проводимость между стоком и истоком. Изменяя напряжение на затворе можно управлять величиной тока стока. Говорят, что такой МОП-транзистор работает в режиме обогащения, в отличие от полевого транзистора с р-n переходом, который работает в режиме обеднения. Дырки в индуцированном канале в n-области подложки являются неосновными носителями заряда.

Изображение на схеме МОП-транзистора с индуцированным каналом p-типа показано на рис. 54. У такого транзистора канал показан в виде прерывистой линии, которая подчеркивает, что собственный проводящий канал между стоком и истоком отсутствует. Типы транзисторов с индуцированным каналом p-типа: КП 301, КП 304.

Входные и выходные характеристики транзистора с индуцированным  каналом p-типа приведены на рис. 55. Транзистор начинает проводить ток при |Uзи|=|Uпор|. Здесь Uпор называется - пороговое напряжение.

На рис. 56 показано изображение МОП - транзистора с индуцированным каналом n-типа. Входная характеристика приведена на рис. 57.

                                                                   

3.2.3. Крутизна

Как можно судить о качестве полевого транзистора? У биполярного транзистора важнейшим параметром является коэффициент усиления по току, который определяется отношением токов. В случае полевого транзистора ток стока Iс управляется напряжением Uзи между затвором и истоком. Таким образом, о способности транзистора усиливать можно судить по величине отношения Iс/Uзи, которое имеет размерность проводимости. Эта величина называется крутизной, обозначается буквой S  и определяется как отношение
S=dIс/dUзи.

Если Iс измеряется в миллиамперах, а Uзи - в вольтах, то крутизна S указывается в мA/B или в миллисименсах (мСм).

3.2.4. Особенности полевых МОП транзисторов

1. Очень большое Rвх, он управляется не током, как  биполярный, а напряжением, прикладываемым к цепи затвор–исток. Поэтому для управления им требуется очень маленькая мощность

2. Высокое быстродействие в ключевых режимах по сравнению с быстродействием биполярных транзисторов, т.к. нет процессов накопления и рассасывания неосновных носителей, как это наблюдается у биполярных транзисторов. В биполярных транзисторах помимо основных носителей тока, существуют также и неосновные, которые транзистор набирает благодаря току базы. С наличием неосновных носителей связано такое понятие как, время рассасывания, которое обуславливает задержку выключения транзистора.

3. Положительный ТКС, что упрощает включение их на параллельную работу для получения большой нагрузочной способности по току. Между параллельно включенными транзисторами обеспечивается равномерное токораспределение из-за эффекта самовыравнивания токов: если ток через какой-либо транзистор будет больше, чем через другие параллельно включенные транзисторы, то возрастет его нагрев, увеличится сопротивление канала, возрастет напряжение проводимости, в результате возрастет ток через параллельно включенный транзистор. Здесь работает правило электротехники: в цепи с параллельным соединением элементов токи распределяются обратно пропорционально сопротивлениям элементов.

4. Отсутствие у полевого транзистора явления вторичного пробоя, поэтому его область безопасной работы в координатах ток-напряжение гораздо больше, чем у биполярного транзистора.

5. Высоковольтные полевые транзисторы по сравнению с биполярными имеют повышенное падение напряжения в режиме насыщения, поэтому они имеют большие потери мощности. Падение напряжения сильно растет с повышением температуры (у биполярных и IGBT – уменьшается) и с ростом рабочего напряжения. Последнее обусловлено тем, что с ростом напряжения растет сопротивление канала (примерно по квадратичному закону).

3.2.5. Ключ на КМОП - транзисторах с индуцированным каналом

Буква К обозначает, что в ключе применена пара из двух транзисторов с разным типом проводимости. Такая пара называется комплементарной. Схема ключа показана на рис. 58, диаграммы работы - на рис. 59. Интервал I - входной ключ управления переключен вверх, II - на общей точке. Часто наличие на входе напряжения какой-то величины обозначают единицей, нулевое напряжение - обозначают нулем. Uвых рисуется, оценивая состояние каждого полевого транзистора при подаче на вход единичного или нулевого напряжения. Схема замещения для I интервала показана  на рис. 60, для II интервала - на рис.61.

Состояние ключей определяется по входным характеристикам. Когда состояние выхода ключа противоположно состоянию входа, ключ называется инвертором.

В заключение раздела по полевым транзисторам приводим таблицу обозначений и входных характеристик транзисторов – Таблица 2 и таблицу режимов работы каналов и полярностей электродных напряжений –   Таблица 3. В настоящее время выпускаются МОП-транзисторы на напряжения до 1000В и токи до сотен ампер при рабочей частоте 30…100кГц, управление от цифровых микросхем с напряжением питания 5В. Разработан составной транзистор из комбинации МОП-транзистора с биполярным. Название такого транзистора: биполярный транзистор с изолированным затвором (IGBT – Insulated Gate Bipolar Transistor). Изображение этого транзистора и его входная характеристика показаны на рис. 62.

3.2.6. Переключатели аналоговых сигналов

Примеры, где применяются переключатели: подключение измерительного прибора к цепям с аналоговыми сигналами; процедура модуляции сигналов; переключения в устройствах контроля параметров работы различных схем электрооборудования и др.

Идеальные переключатели - это полевые транзисторы. Обычно применяются полевые транзисторы с изолированным затвором. Такие транзисторы обеспечивают изоляцию цепи управления ключом от цепи входного переключаемого сигнала. Самый распространенный ключевой элемент - это полевой транзистор (с изолированным затвором и индуцированным каналом). Транзистор с индуцированным каналом наиболее подходит, так как он может обрабатывать сигналы любого знака и является нормально закрытым.


Схема простейшего аналогового переключателя показана на следующем рисунке:

Для этого переключателя:

                 ±Uвх, при замкнутом VT;

Uвых=     0, при разомкнутом VT.

Для сравнения приводим соотношения для логического ключа:

                 1, при замкнутом VT;

Uвых=     0, при разомкнутом VT.

Отсюда видно основное различие между ключами.

Для отпирания полевого транзистора VT в соответствии с его входной характеристикой на затвор нужно подать напряжение, которое отрицательнее напряжения на остальных электродах (сток и исток VT взаимозаменяемы) на величину порогового напряжения Uпор. Для VT p-типа Uпор<0, а характеристика имеет вид:


Чем больше соотношение ïUзï>ïUпорï, тем меньше сопротивление канала. Подложку полевого транзистора обычно подключают к источнику постоянного напряжения. Это позволяет исключить влияние подложки на передачу Uвх.

Для правильной работы переключателя с каналом p - типа необходимо выполнять несколько условий:

1. Для разомкнутого состояния VT на затворе требуется напряжение

Uз выкл>Uпoр+Uвх мах.

Например, при Uпoр=-5В для входного напряжения -10В, на затвор необходимо подать Uз выкл>-5В+(-10В)=-15В, т.е. -14В, -13В и т.д. Для входного напряжения +10В, на затвор необходимо подать Uз выкл>-5В+ (+10В)=+5В, т.е. +6В, +7В и т.д. Соответственно для переключения знакопеременного сигнала на затвор надо подавать большее из этих расчетных напряжений, например, +10В.

2. Для замкнутого состояния VT:

Uз вкл<Uпoр+Uвх min.

Например, при Uпoр=-5В для переключения -10В на затвор необходимо подать Uз вкл=-10В+(-10В)=-20В. Здесь имеется в виду, что при Uпoр=-5В для обеспечения проводимости ключом требуемого тока Ic в соответствии с входной характеристикой на затвор подается напряжение с запасом по сравнению с Uпoр, например, -10В.


Сопротивление проводящего канала транзистора изменяется нелинейно при изменении напряжения на затворе относительно стока или истока. Для уменьшения нелинейности применяют ключ на двух транзисторах с каналами разных типов. Транзисторы включаются параллельно. При этом изменение переключаемого       Uвх при конкретном напряжении на затворе влияет на сопротивление канала противоположным образом, поэтому сопротивление канала меняется меньше при изменении Uвх. В данном случае ключ будет иметь вид:

Рекомендация для Вас - Характеристика телекоммуникационных вычислительных сетей.

Подобные ключи выпускаются в виде микросхемы, например отечественная  микросхема К176КТ1.

3.3. Охлаждение полупроводниковых приборов

В маломощных схемах транзисторы редко рассеивают мощность более 100мВт. Распространение тепла вдоль проводников и конвекция от корпуса транзистора в окружающий воздух при этом оказываются достаточными, чтобы избежать перегрева p-n перехода.

Транзисторы, на которых рассеиваются большие мощности, например, в мощных источниках питания и в выходных каскадах усилителей мощности, требуют применения специальных средств для отвода тепла. Обычно теплоотводы (радиаторы) используются с транзисторами, конструктивное исполнение которых предполагает их работу с радиаторами. Радиатор часто имеет ребристое исполнение и обычно он закрепляется на заземленном металлическом корпусе установки, которая сама может служить теплоотводом. Во всех случаях необходимо помнить, что корпус транзистора обычно соединен с коллектором и поэтому необходима электрическая изоляция между корпусом транзистора и радиатором. Слюдяные или лавсановые прокладки с нанесенной на каждую сторону теплопроводящей пастой гарантируют хороший тепловой контакт.

Качество теплоотвода обычно характеризуется величиной теплового сопротивления, которое учитывает тот факт, что скорость распространения тепла пропорциональна разности температур между источником тепла и внешней средой. В соответствии с этим понятием тепловое сопротивление q равно разности температур, деленной на величину рассеиваемой мощности, и  измеряется в  оС/Вт. Таким образом, корпус теплоотвода, имеющий тепловое сопротивление 3 оС/Вт, при рассеиваемой мощности 30Вт будет нагреваться до температуры на 90 оС выше температуры окружающей среды. Полное тепловое сопротивление транзистора на теплоотводе состоит из последовательного соединения тепловых сопротивлений между полупроводниковым кристаллом и корпусом, корпусом и радиатором, радиатором и окружающей средой. Максимальная температура полупроводникового кристалла обычно составляет 150 оС, а температуру окружающей среды можно принять равной 50 оС (это температура, при которой допускается работа электронной аппаратуры общего назначения).

Производители транзисторов, как правило, указывают безопасную максимальную температуру корпуса для своих транзисторов в 125 оС, кроме того, теплопроводность от корпуса транзистора к радиатору обычно столь хороша, что в большинстве вычислений можно учитывать только тепловое сопротивление между радиатором и воздухом qрв. Зная мощность Р, рассеиваемую транзистором, и полагая, что температура окружающей среды равна 50 оС, можно найти температуру корпуса транзистора: Тк=50+(Р*qрв). Сверяясь с данными производителя, теперь можно выяснить, сможет ли рассматриваемый транзистор рассеивать требуемую мощность при найденной температуре корпуса. Если это не так, то тепловое сопротивление qрв должно быть уменьшено путем применения большего радиатора. Большие ребристые радиаторы для мощных транзисторов обычно имеют тепловое сопротивление 2…4 оС/Вт, которое можно уменьшить до 1 оС/Вт с помощью принудительного охлаждения.

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5259
Авторов
на СтудИзбе
420
Средний доход
с одного платного файла
Обучение Подробнее