Популярные услуги

Курсовой проект по деталям машин под ключ
КМ-4. Типовое задание к теме косвенные измерения. Контрольная работа - любой вариант за 5 суток.
КМ-3. Задание по Matlab/Scilab. Контрольная работа - любой вариант за 3 суток!
КМ-3. Типовое задание к теме прямые измерения. Контрольная работа (ИЗ1) - любой вариант!
Курсовой проект по деталям машин под ключ в бауманке
Все лабораторные под ключ! КМ-1. Комбинационные логические схемы + КМ-2. Комбинационные функциональные узлы и устройства + КМ-3. Проектирование схем
ДЗ по ТММ в бауманке
Любая лабораторная в течение 3 суток! КМ-1. Комбинационные логические схемы / КМ-2. Комбинационные функциональные узлы и устройства / КМ-3. Проектирование схем
Допуски и посадки и Сборочная размерная цепь + Подетальная размерная цепь
ДЗ по матведу любого варианта за 7 суток

Цветные сплавы

2021-03-09СтудИзба

Лекция 9

Цветные сплавы

Медные сплавы

Свойства меди. Медь металл красновато-розового цвета; кристаллическая ГЦК решетка, поли­морфных превращений нет. Медь менее тугоплавка, чем железо, но имеет большую плотность. Медь обладает хорошей технологич­ностью. Она прокатывается в тонкие листы, ленту. Из меди получают тонкую проволоку, медь легко полируется, хорошо паяется и сваривается. Медь характеризуется высокими теплопро­водностью и электропроводимостью, пла­стичностью и коррозионной стойкостью.

Примеси снижают все эти свойства. По ГОСТ 859-78 в зависимости от содержания примесей различают следующие марки ме­ди: М00 (99,99%Cu), М0 (99,97%Cu), M1 (99,9%Cu), М2 (99,7%Cu), МЗ (99,5%Cu). Наиболее часто встречающиеся в меди при­меси подразделяют на три группы.

1.  Растворимые в меди элементы Al, Fe, Ni, Zn, Ag повышают прочность и твер­дость меди  и используются для ле­гирования сплавов на медной основе.

2. Нерастворимые элементы РЬ и Bi ухуд­шают механические свойства меди и однофазных сплавов на ее основе. Образуя легко­плавкие эвтектики, располагающиеся по границам зерен основной фазы, они вызы­вают красноломкость. Причем вредное влия­ние висмута обнаруживается при его содер­жании в тысячных долях процента, посколь­ку      его      растворимость      ограничивается 0,001%. Вредное влияние свинца также про­является     при     малых     его     содержаниях (< 0,04 %).  Висмут,  будучи  хрупким  метал­лом, охрупчивает медь и ее сплавы. Свинец, обладая  низкой  прочностью,  снижает   про­чность медных  сплавов,  однако  вследствие хорошей    пластичности    не    вызывает    их охрупчивания. Кроме того, свинец улучшает антифрикционные  свойства  и  обрабатывае­мость  резанием   медных   сплавов,   поэтому применяется для легирования двухфазных сплавов меди.

3. Нерастворимые примеси O, S, Se, Tl присутствуют в меди и ее сплавах в виде промежуточных фаз, которые образуют с медью эвтектики с вы­сокой температурой плавления и не вызы­вают красноломкости. Кислород при отжиге меди в водороде вызывает «водородную бо­лезнь», которая может привести к разруше­нию металла при обработке давлением или эксплуатации готовых деталей.

Механические свойства меди в большой степени зависят от ее состояния и в меньшей от содержания примесей. Высокая пластичность чистой отожженной меди объясняется большим количеством плоскостей скольжения. Холодная пластическая деформация (достигающая 90% и более) увеличивает проч­ность, твердость, предел упругости меди, но снижает пластичность и электрическую про­водимость. При пластической деформации возникает текстура, вызывающая анизотро­пию механических свойств меди. По электропроводимости и теплопроводно­сти медь занимает второе место после сере­бра. Она применяется для проводников элек­трического тока и различных теплообменников, водоохлаждаемых излож­ниц, поддонов, кристаллизаторов.

Недостатки меди: высокая плотность, пло­хая обрабатываемость резанием и низкая жидкотекучесть.

Общая характеристика и классифика­ция медных сплавов. Сохраняя положи­тельные качества меди (высокие тепло­проводность и электропроводимость, коррозионную стойкость и др.), медные сплавы обладают хорошими механиче­скими, технологическими и антифрикционными свойствами.

Для легирования медных сплавов в основном используют элементы, рас­творимые в Cu, Zn, Sn, Al, Be, Si, Mn, Ni. Повышая прочность медных спла­вов, легирующие элементы практически не снижают, а некоторые из них (Zn, Sn, Al) увеличивают пластичность. Высокая пластичность - отличительная особен­ность медных сплавов. По прочности медные сплавы уступают сталям.

Рекомендуемые материалы

По технологическим свойствам мед­ные сплавы подразделяют на деформи­руемые (обрабатываемые давлением) и литейные; по способности упрочнять­ся с помощью термической обработ­ки - на упрочняемые и неупрочняемые. По химиче­скому составу медные сплавы под­разделяют на две основные группы: латуни и бронзы.

Латунями называются сплавы меди с цинком. Они бывают двойными (про­стые) и многокомпонентными (легиро­ванные). Двойные деформируемые лату­ни маркируются буквой Л (латунь) и цифрой, показывающей среднее содер­жание меди в процентах. Латуни с со­держанием 90% Cu и более называются томпаком (Л96), при 80 - 85%Cu — полу­томпаком (Л80). В марках легированных латуней кроме цифры, показывающей со­держание меди, даются буквы и цифры, обозначающие название и количество в процентах легирующих элементов. Алюминий в медных сплавах обозна­чают буквой А, никель-Н, олово-О, свинец-С, фосфор-Ф, железо-Ж, кремний-К, марганец-Мц, берил­лий-Б, цинк-Ц. Например, ЛАН59-3-2 содержит 59%Cu, 3% Аl, 2% Ni. В марках литейных латуней указывается содержание цинка, а количество каждо­го легирующего элемента ставится не­посредственно за буквой, обозначающей его название. Например, ЛЦ40МцЗА со­держит 40% Zn, 3% Mn, 1% Al.

Бронзами называются сплавы меди со всеми элементами кроме цинка. Назва­ние бронзам дают по основным элемен­там. Так, их подразделяют на оловянные, алюминиевые, бериллиевые, кремнистые и др. В бронзах в качестве легирующей добавки может присутствовать цинк. Де­формируемые бронзы маркируют бук­вами Бр (бронза), за которыми следуют буквы, а затем цифры, обозначающие название и содержание в процентах легирующих элементов. Например, БрОЦС4-4-2,5 содержит 4% Sn, 4 % Zn, 2,5 % Pb. Сплавы меди с нике­лем имеют названия: мельхиоры, куниали, нейзильберы. В марках литейных бронз содержание каждого легирующе­го элемента ставится сразу после буквы, обозначающей его название. Например, БрО6Ц6СЗ содержит 6% Sn, 6% Zn, 3% Pb.

Свойства    промышленных    латуней,    обрабатываемых    давлением

  Латунь

Массовая доля, %

σв

σ0,2

δ,%

HB

Cu

Прочих элементов

MПа

Л90

Л68

Л63

Л 60

ЛА77-2

ЛАН59-3-2

ЛН65-5 ЛЖМц59- 1-1

ЛМц58-2

ЛО70-1

ЛС59-1

ЛК80-3

88-91

67-70

62-65

59-62

76-79

57-60

64-67

57-60

57-60

69-71

57-60

79-81

-

-

-

-

1,75-2,5 А1

2,5-3,5 А1

2-3 Ni

5-6,5 Ni

0,1-0,4 Al

0,6-1,2 Fe

0,5-0,8 Mn

0,3-0,7 Sn

1-2 Mn

1-1,5 Sn

0,8-1,9 Pb

2,5-4 Si

260

320

330

380

400

380

400

450

400

350

400

300

120

91

110

160

140

300

170

170

160

100

140

200

45

55

50

25

55

50

65

50

40

60

45

58

530

550

560

770

600

750

600

880

850

600

900

1000

Сплавы на основе алюминия

Свойства алюминия. Алюминий - металл серебристо-белого цвета. Он не имеет полиморфных превращений и кристаллизируется в решетке гранецентрированного куба.

Алюминий обладает малой плотностью, хорошими теплопроводностью и электропроводимостью, высокой пла­стичностью и коррозионной стойкостью. Примеси ухудшают все эти свой­ства.

Постоянные примеси алюминия Fe, Si, Cu, Zn, Ti. В зависимости от содержания примесей первичный алюминий подразделяют на три класса: особой чистоты А999 (≤0,001% примесей), высокой чистоты А995, А99, А97, А95 (0,005-0,05% примесей) и технической чистоты А85, А8 и др. (0,15-1% примесей). Технический алюминий, выпускаемый в виде деформируемого полуфабриката (листы, про­фили, прутки и др.), маркируют АД0 и АД1. Механические свойства алюминия зависят от его чистоты и состояния. Увеличение содержания примесей и пластическая деформация повышают прочность и твердость алюминия. Ввиду низкой прочности алюминий при­меняют для ненагруженных деталей и эле­ментов конструкций, когда от материала требуется легкость, свариваемость, пластичность. Так, из него изготовляют рамы, две­ри, трубопроводы, фольгу, цистерны для перевозки нефти и нефтепродуктов, посуду и др. Благодаря высокой теплопроводности он используется для различных теплообмен­ников, в промышленных и бытовых холо­дильниках. Высокая электропроводимость алюминия способствует его широкому при­менению для конденсаторов, проводов, кабе­лей, шин и др.

Механические свойства алюминия

Марка

Сумма примесей, %

Состояние

σв

σ0,2

δ,%

HB

MПа

А995

А5

АО

0,005

0.5

1

Литой

Литой

Литой

Деформиро­ванный и отожженный

Деформиро­ванный

50 75 90 90

140

-

-

-

30

100

45

29

25

30

12

150 200

250

250

320

Из других свойств алюминия следует от­метить его высокую отражательную способность, в связи с чем он используется для прожекторов, рефлекторов, экранов телевизоров. Алюминий имеет малое эффективное поперечное сечение захвата нейтронов. Он хорошо обрабатывается давле­нием, сваривается газовой и контактной сваркой, но плохо обрабатывается резанием. Алюминий имеет большую усадку затверде­вания. Высокая теплота плавления и те­плоемкость способствуют медленному осты­ванию алюминия из жидкого состояния, что дает возможность улучшать отливки из алю­миния и его сплавов путем модифицирова­ния, рафинирования и других технологиче­ских операций.

Общая характеристика и классифика­ция алюминиевых сплавов. Алюми­ниевые сплавы характеризуют высокой удельной прочностью, способностью со­противляться инерционным и динамиче­ским нагрузкам, хорошей технологич­ностью. Временное сопротивление алю­миниевых сплавов достигает 500 — 700 МПа при плотности не более 2850 кг/м3. По удельной прочности неко­торые алюминиевые сплавы приближаются или соот­ветствуют высокопрочным сталям. Большинство алюми­ниевых сплавов имеют хорошую корро­зионную стойкость (за исключением сплавов с медью), высокие теплопровод­ность и электропроводимость и хоро­шие технологические свойства (обра­батываются давлением, свариваются то­чечной сваркой, а специальные - сваркой плавлением, в основном хорошо обра­батываются резанием). Алюминиевые сплавы пластичнее магниевых и многих пластмасс. Большинство из них превос­ходят магниевые сплавы по коррозион­ной стойкости, пластмассы - по стабиль­ности свойств.

Основными легирующими элемента­ми алюминиевых сплавов являются Cu, Mg, Si, Mn, Zn; реже-Li, Ni, Ti. Многие легирующие элементы образуют с алю­минием твердые растворы ограничен­ной переменной растворимости и про­межуточные фазы. Это дает возможность под­вергать сплавы упрочняющей термиче­ской обработке. Она состоит из закалки на пересыщенный твердый раствор и естественного или искусственного ста­рения.

Легирующие элементы, особенно переходные, повышают температуру рекристаллизации алюминия. При кристаллизации они образуют с алюминием пересыщенные твердые растворы. В процессе гомогенизации и горячей обработки давлением проис­ходит распад твердых растворов с обра­зованием тонкодисперсных частиц интерметаллидных фаз, препятствующих прохождению процессов рекристаллиза­ции и упрочняющих сплавы. Это явле­ние получило название структурного упрочнения, а применительно к прес­сованным полуфабрикатам - пресс-эф­фекта. По этой причине некоторые алю­миниевые сплавы имеют температуру рекристаллизации выше температуры закалки. Для снятия остаточных напря­жений в нагартованных полуфабрикатах (деталях), полученных холодной обра­боткой давлением, а также в фасонных отливках проводят низкий отжиг.

Конструкционная прочность алюми­ниевых сплавов зависит от примесей Fe и Si. Они образуют в сплавах нераство­римые в твердом растворе фазы. Независи­мо от формы (пластинчатой, игольчатой и др.) кристаллы этих фаз снижают пла­стичность, вязкость разрушения, сопро­тивление развитию трещин. Легирова­ние сплавов марганцем уменьшает вредное влияние примесей, так как он связывает их в четвертую фазу, кристаллизирующуюся в ком­пактной форме. Однако более эффек­тивным способом повышения конструк­ционной прочности является снижение содержания примесей с 0,5-0,7%  до 0,1-0,3% (чистый сплав), а иногда и до сотых долей процента (сплав повышенной чистоты). В первом случае к марке сплава добавляют букву Ч, например, Д16Ч, во втором-ПЧ, на­пример, В95ПЧ. Особенно значительно повышаются характеристики пластично­сти и вязкости разрушения в направле­нии, перпендикулярном пластической деформации.

Алюминиевые сплавы классифици­руют по технологии изготовления (де­формируемые, литейные, спеченные), способности к термической обработке (упрочняемые и неупрочняемые) и свой­ствам.

Сплавы на основе магния

Свойства магния. Магний-металл сере­бристо-белого цвета. Он не имеет поли­морфных превращений и кристаллизуется в плотноупакованной гексагональной решет­ке.

Магний и его сплавы отличаются низкой плотностью, хорошей обра­батываемостью резанием и способностью воспринимать ударные и гасить вибра­ционные нагрузки. Теплопроводность магния в 1,5, а электропроводимость — в 2 раза ниже, чем у алюминия. Примерно в 1,5 раза мень­ше, чем у алюминия, и его модуль нормаль­ной упругости. Однако они близки по удель­ной жесткости. В зависимости от содержания примесей установлены следующие марки магния (ГОСТ 804-72): Мг96 (99,96% Mg), Мг95 (99,95% Mg), Мг90 (99,90% Mg). При­меси Fe, Si, Ni, Си понижают и без того низ­кие пластичность и коррозионную стойкость. При нагреве магний активно окисляется и при температуре выше 623°С на воздухе воспламеняется. Это затрудняет плавку и разливку магния и его сплавов. По­рошок, тонкая лента, мелкая стружка магния представляют большую опасность, так как самовозгораются на воздухе при обычных температурах, горят с выделением большого количества теплоты и излучением ослепи­тельно яркого света.

Общая характеристика и классифика­ция магниевых сплавов. Достоинством магниевых сплавов является высокая удельная прочность. Временное сопро­тивление отдельных сплавов достигает 250-400 МПа. Основными ле­гирующими элементами магниевых сплавов являются Al, Zn, Mn. Для до­полнительного легирования используют цирконий, кадмий, церий, ниодим и др. Механические свойства сплавов магния при температуре 20-25°С улучшаются при легировании алюминием, цинком, цирконием. Цирконий и це­рий оказывают модифицирующее дей­ствие на структуру сплавов магния. Особенно эффективно модифицирует цирконий. Добавка 0,5-0,7% Zr умень­шает размер зерна магния в 80-100 раз. Это объясняется структурным и раз­мерным соответствием кристаллических решеток. Кроме того, цирконий и марганец способствуют устранению или значительному уменьшению влия­ния примесей железа и никеля на свой­ства сплавов. Они образуют с этими элементами промежуточные фазы боль­шой плотности, которые при кристалли­зации выпадают на дно тигля, очищая тем самым сплавы от вредных приме­сей.

Увеличение растворимости легирую­щих элементов в магнии с повышением температуры дает возмож­ность упрочнять магниевые сплавы с помощью закалки и искусственного старения. Однако термическая обработ­ка магниевых сплавов затруднена из-за замедленных диффузионных процессов в магниевом твердом растворе. Малая скорость диффузии требует больших выдержек при нагреве под закалку для растворения вторичных фаз. Благодаря этому такие сплавы можно закаливать на воздухе, они не склонны к естественному старению. При искусственном старении необходимы высокие температуры (до 200° С) и боль­шие выдержки (до 16-24 ч). Наиболь­шее упрочнение термической обработкой достигается у сплавов магния, леги­рованных неодимом.

Временное сопротивление и особенно предел текучести магниевых сплавов значительно повышаются с помощью термомеханической обработки, которая состоит в пластической деформации за­каленного сплава перед его старением.

Из других видов термической обра­ботки к магниевым сплавам применимы различные виды отжига: гомогенизация, рекристаллизационный отжиг и отжиг для снятия остаточных напряжений. Для деформируемых сплавов диффузионный отжиг совмещают с нагревом для горя­чей обработки давлением. Температура рекристаллизации магниевых сплавов в зависимости от их состава находится в интервале 150-300°С, а рекристаллизационного отжига - соответственно в интервале 250-350 °С. Более высокие температуры вызывают рост зерна и понижение механических свойств. От­жиг для снятия остаточных напряжений проводят при температурах ниже темпе­ратур рекристаллизации.

Магниевые сплавы хорошо обрабаты­ваются резанием (лучше, чем стали, алюминиевые и медные сплавы), легко шлифуются и полируются. Высокие ско­рости резания и небольшой расход энергии способствуют снижению стои­мости обработки резанием деталей из магниевых сплавов по сравнению с дру­гими сплавами. Они удовлетворительно свариваются контактной роликовой и дуговой сваркой. Прочность сварных швов деформируемых сплавов соста­вляет 90% от прочности основного ме­талла.

К недостаткам магниевых сплавов, наряду с низкой коррозионной стой­костью и малым модулем упругости, следует отнести плохие литейные свой­ства, склонность к газонасыщению, окислению и воспламенению при их приготовлении. Небольшие добавки бе­риллия (0,02-0,05%) уменьшают склон­ность к окисляемости, кальция (до 0,2%) - к образованию микрорыхлот в отливках. Плавку и разливку магниевых сплавов ведут под специальны­ми флюсами.

По технологии изготовления маг­ниевые сплавы подразделяют на ли­тейные (МЛ) и деформируемые (МА); по механическим свойствам-на сплавы невысокой и средней прочности, высоко­прочные и жаропрочные; по склонности к упрочнению с помощью термической обработки-на сплавы, упрочняемые и неупрочняемые термической обработ­кой. Для повышения пластичности маг­ниевых сплавов их производят с пони­женным содержанием вредных примесей Fe, Ni, Си (повышенной чистоты). В этом случае к марке сплава доба­вляют строчные буквы «пч», например, МЛ5пч или МА2пч.

Титан   и   сплавы   на   его   основе

Свойства титана. Титан-металл серого цвета. Он имеет две полиморфные модификации. Полиморфное превращение (882 °С) при медленном охлаждении происходит по нор­мальному механизму с образованием поли­эдрической структуры, а при бы­стром охлаждении - по мартенситному меха­низму с образованием игольчатой структуры.

Промышленный способ производства ти­тана состоит в обогащении и хлорировании титановой руды с последующим ее восстано­влением из четыреххлористого титана металлическим магнием. Полученную при этом титановую губку  марки­руют по твердости специально, выплав­ленных из нее образцов (ТГ-100, ТГ-110 и т. д.). Для получения монолитного титана губка размалывается в порошок, прессуется и спекается или переплавляется в дуговых печах в вакууме или атмосфере инертных газов.

Для уменьшения количества примесей и более равномерного их распределения по сечению слитка рекомендуется его двух-трехразовая переплавка. Характерную для титановых слитков крупнозернистую структуру измельчают путем модифицирования цирконием или бором. Полученный в результате переплава технический титан  маркируют в зависимости от со­держания примесей ВТ1-00 (Σ примесей ≤ 0,398%), ВТ1-0 (Σ примесей ≤0,55%).

Механические свойства иодидного и технического титана

Титан

Сумма

примесей, %

σв

σ0,2

δ

Ψ

HB

МПа

%

ВТ1-0 Иодидный

0,3

0,093

450-600 250-300

380-500 100-150

20-25 50-60

50

70-80

2070 1300

Отличительными особенностями титана являются хорошие механические свойства, малая плотность, высокая удельная проч­ность и коррозионная стойкость. Низкий модуль упругости титана, почти в 2 раза меньший, чем у железа и никеля, за­трудняет изготовление жестких конструкций. Механические свойства титана характери­зуются хорошим сочетанием прочности и пластичности.

Высокая пластичность иодидного титана по сравнению с другими металлами, имеющими гексагональную кристаллическую ре­шетку (Zn, Cd, Mg), объясняется большим количеством систем скольжения и двойникования.

Ещё посмотрите лекцию "55 Гуманизм в италии" по этой теме.

Механические свойства титана сильно за­висят от наличия примесей, особенно водорода, кислорода, азота и угле­рода, которые образуют с титаном твердые растворы внедрения и промежуточные фазы: гидриды, оксиды, нитриды и карбиды. Не­большое количество кислорода, азота и угле­рода повышает твердость, временное сопро­тивление и предел текучести, однако при этом значительно уменьшается пластичность, снижается коррозионная стой­кость, ухудшаются свариваемость, способ­ность к пайке и штампуемость. Поэтому со­держание этих примесей в титане ограничено сотыми, а иногда тысячными долями про­цента. Аналогичным образом, но в мень­шей степени, оказывают влияние на свойства титана железо и кремний. Очень вредная примесь в титане  - водород. Присутствуя в весьма незначительном количестве, водо­род выделяется в виде тонких хрупких пла­стин гидридной фазы на границах зерен, что значительно охрупчивает титан. Водородная хрупкость наиболее опасна в сварных кон­струкциях из-за наличия в них внутренних напряжений. Допустимое содержание водо­рода в техническом титане находится в пре­делах 0,008-0,012%.

Технический титан хорошо обрабатывает­ся давлением. Из него изготовляют все виды прессованного и катаного полуфабриката: листы, трубы, проволоку, поковки. Титан хо­рошо сваривается аргонодуговой и точечной сваркой. Сварной шов обладает хорошим со­четанием прочности и пластичности. Проч­ность шва составляет 90% прочности основ­ного металла.

Титан плохо обрабатывается резанием, на­липает на инструмент, в результате чего тот быстро изнашивается. Для обработки титана требуются инструменты из быстрорежущей стали и твердых сплавов, малые скорости ре­зания при большой подаче и глубине реза­ния, интенсивное охлаждение. К недостатку титана относятся также низкие антифрик­ционные свойства.

Влияние легирующих элементов на структуру и свойства титановых сплавов. Легирующие элементы по характеру влияния на полиморфные превращения титана подразделяют на три группы: α-стабилизаторы, β-стабилизаторы и ней­тральные элементы. Практическое значение для легирования титана имеет только алюминий, так как кислород и азот сильно охрупчивают титановые спла­вы.

Алюминий - широко распространен­ный, доступный и дешевый металл. Вве­дение его в титановые сплавы уменьшает их плотность и склонность к водородной хрупкости, повышает модуль упругости, прочность при 20-25°С и вы­соких температурах.

Добавка к сплавам титана с алюми­нием таких β-стабилизаторов, как V, Mo, Mb, Mn, уменьшает склонность к образованию упорядоченной струк­туры (сверхструктуры). Снижая температуру полиморфного превращения титана, β-стабилизаторы расширяют область твердых растворов на основе Tiα.

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5259
Авторов
на СтудИзбе
420
Средний доход
с одного платного файла
Обучение Подробнее