Популярные услуги

Курсовой проект по деталям машин под ключ
КМ-4. Типовое задание к теме косвенные измерения. Контрольная работа - любой вариант за 5 суток.
КМ-3. Задание по Matlab/Scilab. Контрольная работа - любой вариант за 3 суток!
КМ-3. Типовое задание к теме прямые измерения. Контрольная работа (ИЗ1) - любой вариант!
Курсовой проект по деталям машин под ключ в бауманке
ДЗ по ТММ в бауманке
Все лабораторные под ключ! КМ-1. Комбинационные логические схемы + КМ-2. Комбинационные функциональные узлы и устройства + КМ-3. Проектирование схем
Любая лабораторная в течение 3 суток! КМ-1. Комбинационные логические схемы / КМ-2. Комбинационные функциональные узлы и устройства / КМ-3. Проектирование схем
Допуски и посадки и Сборочная размерная цепь + Подетальная размерная цепь
ДЗ по матведу любого варианта за 7 суток
Главная » Лекции » Инженерия » Котельные установки и парогенераторы » Водно-химические режимы паровых котлов

Водно-химические режимы паровых котлов

2021-03-09СтудИзба

12.Водно-химические режимы паровых котлов

12.1.Водно-химические режимы и нормы качества пара и питательной воды

Водно-химический режим, рекомендованный для котла, должен обеспечить получение необходимой чистоты пара перед турбиной, ограничение допустимой скорости образования отложений на внутренних поверхностях оборудования и снижение интенсивности коррозионных процессов по пароводяному тракту. Решение этих задач определяется типом оборудования, параметрами водного теплоносителя, материалом оборудования, количеством и составом примесей и т.п.

Необходимая чистота пара определяется предотвращением заноса примесями проточной части турбины. Паровая турбина чувствительна к отложениям примесей: достаточно 3…4 кг отложений на лопатках, чтобы турбина 300 МВт снизила свою мощность и экономичность. С увеличением давления перед турбиной уменьшается проходное сечение лопаточного аппарата и, следовательно, возрастает влияние солевого заноса на ее работу. Поэтому с ростом давления перегретого пара возрастают требования к его чистоте.

В (таб.12.1) представлены нормы качества пара для барабанных котлов и котлов сверхкритического давления (по "Правилам технической эксплуатации электрических станций и сетей"). Нормирование качества пара ведется по натрию, так как соединения натрия составляют значительную долю примесей пара, и кремнекислоте, растворимость которой в паре с ростом давления существенно возрастает, и она в турбине образует трудносмываемые отложения.

В барабанных котлах нормам (таб.12.1) должен соответствовать не только перегретый, но и насыщенный пар, поскольку возможно выпадение примесей в поверхностях пароперегревателя.

Концентрация примесей в насыщенном паре определяется уносом влаги ω, %, и растворимостью в паре, характеризуемой коэффициентом распределения Кp.

Концентрацию примеси в паре Сp, уходящем из барабана котла, можно существенно снизить по сравнению с C`п, если обеспечить промывку влажного пара на специальном устройстве.

Таким образом, в барабанном котле качество пара зависит не только от качества питательной воды, но и других факторов. Поэтому нормы качества питательной воды для этих котлов устанавливаются менее жесткие (таб.12.2), использовать блочные обессоливающие установки (БОУ) экономически невыгодно.

Рекомендуемые материалы

В прямоточных котлах примеси питательной воды переходят в пар или образуют внутритрубные отложения, что отрицательно сказывается на работе котла. Качество питательной воды прямоточных котлов должно быть высокое (таб.12.2). Добавочная вода проходит химическое обессоливание. В блоках СКД организуется 100%-ная конденсатоочистка в БОУ для удаления механических примесей (нерастворенных продуктов коррозии конструкционных материалов), коллоидно-дисперсных и растворенных веществ, попадающих в конденсат за счет присосов в конденсаторе.

Ограничение образования отложений в барабанном котле происходит за счет снижения Ск.в (продувка, ступенчатое испарение), а в прямоточном котле докритического давления может быть выделена переходная зона для отложения в ней большинства примесей. Во всех случаях устанавливаются предельные концентрации примесей в питательной воде и проводится коррекция химического состава воды для уменьшения количества отложений и увеличения их теплопроводности.

Полностью избежать отложений в поверхностях котла не удается, поэтому для их удаления проводятся периодически химические промывки котла или его отдельных поверхностей.

Снижение интенсивности коррозионных процессов обеспечивается путем ввода в конденсат и питательную воду реагентов, влияющих на скорость коррозии, создающих на поверхности металла защитные пленки с высокой теплопроводностью.

В барабанных котлах нормирование жесткости питательной воды (соединений Са и Mg) вызвано тем, что соли жесткости приводят к образованию на стенках труб отложений, большого количества шлама в объеме воды и малотеплопроводных отложений, которые могут прикипать к поверхности труб. Ограничение концентрации угольной кислоты и кислорода определяется их влиянием на коррозию пароводяного тракта.

Для связывания кислорода, присутствующего в питательной воде за счет присосов в вакуумной части конденсатного тракта и неполностью удаленного при деаэрации, производится обработка турбинного конденсата гидразином N2H4. Поддержание гидразина в пределах 20…60 мкг/кг перед котлом обеспечивает подавление кислородной коррозии.

Связывание остаточных после деаэратора концентраций углекислоты производится аммиачной обработкой питательной воды. Аммиак NH3 нейтрализует угольную кислоту и повышает рН до значений слабощелочной среды.

Чрезмерное количество аммиака (свыше 1000 мкг/кг) приводит к аммиачной коррозии латунных трубок конденсатора и ПНД.

Примеси железа и меди образуют малотеплопроводные отложения на теплонапряженных поверхностях нагрева, приводящие к пережогу труб. С ростом давления в котле интенсивность образования железооксидных отложений увеличивается (уменьшается растворимость, увеличиваются тепловые потоки).

Содержание масел в питательной воде ограничивается в связи с резким увеличением термического сопротивления экранных труб при образовании маслянистой пленки на поверхности металла.

В прямоточных котлах СКД качество питательной воды должно быть равным или близким к качеству пара.

Растворимость соединений меди, натрия и кремнекислоты в водном теплоносителе СКД достаточно велика, и эти соединения проходят котел транзитом. Допустимые концентрации Сu, Na и SiO2 в питательной воде вызваны надежной работой турбины.

Снижение допустимых концентраций соединений железа и солей жесткости в питательной воде направлено на уменьшение скорости роста малотеплопроводных отложений в радиационных поверхностях нагрева, особенно в котлах, сжигающих мазут.

В (таб.12.3) приведены допустимые значения ряда показателей работы блока СКД, определяемые применением водно-химических режимов. Показатели оцениваются при сжигании мазута через 7000 ч, а при сжигании газа и твердых топлив - через 24 000 ч эксплуатации.

12.2.Водно-химические режимы прямоточных котлов

Гидразинно-аммиачный водный режим (ГАВР) рекомендуется на энергетических блоках, в которых трубки конденсатора и ПНД выполнены из медьсодержащих сплавов (латуни).

В воде конденсатного тракта за счет присосов воздуха в конденсаторе и на всасе конденсатного насоса растворены кислород и углекислота. Термическая деаэрация не обеспечивает полного удаления кислорода и углекислоты, поэтому ее дополняют химической обработкой питательной воды.

В конденсат (после БОУ) или в питательную воду (после деаэратора) подают (рис.12.1) гидразин-гидрат (N2H4∙H2O), который вступает в реакцию с кислородом с образованием в результате азота и воды. Для обеспечения полного связывания кислорода гидразин вводят в количестве, превышающем стехиометрическое значение. Оставшийся в воде избыточный гидразин (20…60 мкг/кг перед котлом) практически полностью разлагается в котле с образованием аммиака, азота и воды.

Углекислота находится в воде в виде молекул СО2 (растворенный газ) и раствора углекислоты Н2СО3. Углекислота нейтрализуется дозируемым в питательную воду аммиаком, который вводится в количестве, обеспечивающем как нейтрализацию СО2 так и создание избытка гидроксида аммония, повышающего рН среды до 9,1 ± 0,1.

Значение показателя рН = 9,1 ± 0,1 рекомендуется при наличии в конденсатном тракте латунных трубок, но при этом не подавляется полностью ни коррозия стали, ни коррозия латуни. В результате в котел поступают оксиды железа и меди, где происходит их отложение в НРЧ. При ГАВР в котле не образуется защитных пленок, и металл корродирует. Недостатки ГАВР заметно проявились при переходе на сжигание в котлах мазута с высокими тепловыми потоками. Рост температуры стенки в НРЧ достигает 10…15°С за 1000 ч работы; внутренние отложения увеличиваются за 1000 ч на 20…30 г/м2 в газомазутных котлах или на 15…20 г/м2 в пылеугольных котлах; при отложениях 250…400 г/м2 приходится выполнять химические очистки поверхностей нагрева. На газомазутных котлах межпромывочный период составляет 7000…10000 тыс. ч, а в некоторых случаях и меньше (4…6 месяцев, т.е. через 3000…4500 ч).

Гидразинный водный режим (ГВР) (нейтрально-восстановительный ВХР) применяется при наличии медьсодержащих сплавов в конденсатном тракте (рис.12.1). Гидразин вводится после БОУ (перед ПНД), в питательной воде поддерживается рН = 7,7…0,2 (за счет гидразина и работы ионитовых фильтров БОУ). При этом обеспечивается: снижение концентрации соединений меди более чем в 2 раза (до 2 мкг/кг); содержание железа в питательной воде не более 10 мкг/кг; восстановление оксидов железа и перевод их в магнетит; удлинение межпромывочного периода в газомазутных котлах до 15 000 ч; уменьшение заноса проточной части турбины.

Высокощелочной режим применяется на блоках, где отсутствуют трубки из латуни. Это разновидность гидразинно-аммиачного режима. За счет ввода аммиака поддерживается рН = 9,5…9,6, при этом скорость коррозии железа мала. Для реализации этого режима в фильтрах смешанного действия БОУ требуются специальные катиониты (в NH4-фоpмe). Высокие концентрации аммиака в воде способствуют переходу в пар и выносу в турбину хлоридов и сульфатов, которые вызывают коррозионное растрескивание под напряжением элементов турбины.

Нейтрально-окислительный водно-химический режим (НОВР) широко распространен на блоках СКД, в ПНД которых применяются трубки из нержавеющей аустенитной стали (вместо латунных). После БОУ турбинный конденсат приближается к теоретически чистой нейтральной воде, электропроводность которой 0,04…0,06 мкСм/см. Такая вода почти не содержит ионогенных примесей, и электрохимические процессы в ней заторможены. Содержащийся в обессоленной воде кислород играет неоднозначную роль: при малой концентрации (менее 30 мкг/кг) кислорода обессоленная вода является корро-зионно-агрессивной средой; при увеличении концентрации кислорода скорость коррозии резко снижается, а при концентрации свыше 200 мкг/кг на поверхности металла образуется сплошная защитная оксидная пленка из магнетита Fe3O4 и гематита Fe2O3. Оксидные пленки обеспечивают длительное, устойчивое состояние стали, защищают от дальнейшей коррозии. При останове оборудования консервация его не требуется. Ухудшение качества воды (электропроводность свыше 0,2…0,3 мкСм/см) вызывает значительный рост скорости коррозии.

Нейтрально-кислородный водный режим (НКВР) применяется, когда питательная вода имеет высокую чистоту (электропроводность меньше 0,3 мкСм/см). В конденсат дозируется кислород с концентрацией 200…800 мкг/кг. Выпар из деаэратора открыт для удаления углекислоты, при этом удаляется и часть кислорода. В этом случае в питательную воду добавляется кислород в количестве 100…400 мкг/кг. Концентрация O2 должна быть такой, чтобы кислород израсходовался до участков пароперегревателя из аустенитной стали. Для поддержания нейтрального значения рН = 7 в питательную воду дозируется аммиак в небольших количествах (30…60 мкг/кг). Возможен режим с подщелачиванием воды (аммиаком) до рН = 8. Подачу газообразного кислорода в воду трудно автоматизировать.

Режим НКВР обеспечивает содержание железа в питательной воде ниже нормативного значения (в среднем 5…7 мкг/кг, на некоторых электростанциях 1…2 мкг/кг), при этом масса отложений снижается в 3…5 раз (90…150 г/м2 за 10 000 ч работы), а скорость роста температуры стенки трубы в НРЧ не превышает 3…5 °С за 1000 ч, температура металла уменьшается. Химическую очистку поверхностей нагрева выполняют в капитальный или расширенный текущий ремонт. Отказ от дозирования гидразингидрата и больших количеств аммиака удешевляет и упрощает эксплуатацию блока, увеличивает межрегенерационный период фильтров БОУ.

Вместо газообразного кислорода для дозирования в воду применяются и другие окислители. В частности, на ряде электростанций используется раствор переоксида водорода Н2О2, подачу которого можно автоматически регулировать в зависимости от расхода питательной воды. Концентрация Н2О2 составляет 220…280 мкг/кг. При этом на поверхности металла (стали) образуется оксидная пленка из малых кристаллов округлой формы, без трещин, обладающая хорошими защитными свойствами. Рост отложений в НРЧ составляет 60…90 мкг/м2 за 10 000 ч, термическое сопротивление их примерно в 8 раз меньше, чем при режиме ГАВР, поэтому температура стенки растет медленно (до 1…2°С за 1000 ч).

При переводе блоков СКД с режима ГАВР на режим НОВР необходимо оснастить подогреватель ПНД трубками из аустенитной стали; обеспечить плотность конденсаторов турбин, высокое качество обессоленной и питательной воды; провести эффективную химическую очистку поверхностей котла, деаэратора и конденсатно-питательного тракта от отложений меди и других соединений.

Комплексонный водно-химический режим (КВР) организуется на базе гидразинно-аммиачного водного режима. Кроме традиционной гидразинно-аммиачной обработки конденсата и питательной воды на всас бустерных насосов (после деаэратора) подается раствор комплексона аммонийной соли этилендиаминтетрауксусной кислоты (ЭДТК или ЭДТУ).

Аммонийная соль ЭДТК образует со всеми катионами питательной воды (железа, меди, цинка, кальция, магния и др.) комплексонаты, обладающие высокой растворимостью в воде. Расчет концентрации комплексона Скомпл при СКД ведут по стехиометрическим соотношениям по концентрации в питательной воде оксидов железа Cп.в.Fe, меди Cп.в.Cu и цинка Cп.в.Zn.

(12.1)

При температуре 250…330 °С происходит интенсивный термолиз комплексонатов железа (разложение при высокой температуре). При термическом разложении комплексонатов железа в условиях контакта их со сталью на ее поверхности образуется пленка магнетита, плотно сцепленная со сталью и обладающая защитными свойствами. Пленка защищает сталь от общей коррозии. Образование защитной пленки магнетита происходит при отсутствии комплексонатов других катионов, поэтому требуется высокое качество питательной воды, 100%-ная конденсатоочистка. Процесс термолиза зависит только от температуры и не зависит от тепловой нагрузки. Поэтому образование оксидной пленки происходит на обогреваемых и необогреваемых трубах, равномерно по периметру обогреваемой трубы. Зона термолиза комплексоната железа включает последний ПВД (ПВД-8), экономайзер, подвесные трубы, начало НРЧ.

Основная масса оксидов железа (до 80%) выпадает на участках до НРЧ с относительно низкими тепловыми потоками (рис.12.2). При этом в НРЧ количество отложившихся оксидов железа уменьшается в 3-4 раза по сравнению с ГАВР (∆СFe = 2…3 мкг/кг вместо 8…10 мкг/кг).

Отложения образуют плотный слой с теплопроводностью λ = 2…3 Вт/(м∙К) - в 3…4 раза выше теплопроводности при режиме ГАВР. В результате этого рост температуры стенки трубы НРЧ составляет за 1000 ч менее 5°С и межпромывочный период увеличивается.

12.3.Водно-химические режимы барабанных котлов

Состав примесей питательной воды зависит от рабочих параметров (давления, температуры) барабанных котлов. С ростом давления, которое сопровождается, как правило, увеличением мощности котла, повышаются требования к качеству пара и питательной воды. При среднем (давление в барабане P менее 11 МПа) и высоком (P ≥ 11 МПа) давлении добавочная вода проходит умягчение и в ней содержатся легкорастворимые соединения, в основном соли натрия. При сверхвысоком давлении (P = 15,5 МПа) добавляется обессоленная вода. В результате присосов охлаждающей воды в конденсаторе в питательную воду поступают соли жесткости (Са и Mg), характеризующиеся очень малой растворимостью. С увеличением давления в котле допустимые значения концентрации солей жесткости уменьшаются. При этом увеличивается доля продуктов коррозии, в первую очередь - железо-оксидных соединений.

В конденсате турбины и питательной воде барабанных котлов присутствуют кислород и свободная углекислота. Относительно высокая концентрация примесей в воде не дает возможности использовать нейтрально-окислительные режимы. Поэтому для связывания кислорода в питательную воду подается гидразин с избыточной концентрацией 20…60 мкг/кг, а для нейтрализации углекислоты и создания щелочной среды (рН = 9,1) - аммиак (до 1000 мкг/кг).

Фосфатный режим применяется для исключения отложения солей жесткости в экранных трубах. В котловую воду (в барабан котла) вводятся фосфаты, обычно в виде натриевых солей ортофосфорной кислоты (Na3PO4, Na2HPO4). При гидролизе этих солей в воде появляется едкий натр NaOH. В результате взаимодействия фосфатов с солями кальция образуется в водяном объеме шлам [гидроксилапатит Ca3(PO4)2∙ Ca3(OH)2], который удаляется из котла с непрерывной продувкой.

Для образования гидроксилапатита должен выдерживаться определенный избыток PO34+ и поддерживаться высокощелочная среда.

Фосфатный режим не устраняет железооксидного и медного накипеобразования, вызывает железофосфатное накипеобразование, отложения цинка и магния. Поэтому он наиболее пригоден для среднего давления. При высоком и сверхвысоком давлении недостатки его существенны.

Рост массы отложений в газомазутных котлах при фосфатном режиме составляет 20 г/м2 за 1000 ч. Если принять допустимое количество отложений 350…400 г/м2, то химическую промывку надо выполнять через 15…20 тыс.ч. Для угольных котлов это значение в 2 раза больше.

Бескоррекционный водный режим используется при высоком и сверхвысоком давлении, когда качество питательной воды хорошее. На случай больших присосов в конденсаторе и повышение концентрации солей жесткости предусматривается возможность перехода на режим фосфатирования.

При бескоррекционном режиме возможны относительно низкие значения рН, что способствует усилению коррозии поверхностей нагрева. Для увеличения значения рН до необходимого уровня (рН > 9) лучше добавлять не летучий аммиак, а сильные щелочи NaOH, LiOH. Гидроксид лития при взаимодействии с железом (на поверхности стенки) образует стабильную пленку LiFeO2 (феррат лития), но с фосфатами литий образует труднорастворимые в воде соединения, образующие отложения на стенках трубы. Гидроксид лития нельзя применять при возможных режимах фосфатирования. Применяется едкий натр NaOH.

Комплексонный водный режим основан на использовании двухзамещенной натриевой соли ЭДТК (трилон Б). Ввод трилона Б производится непосредственно перед котлом (в сниженный узел питания). Комплексон образует с кальцием, так же как и с другими катионами, комплексонат кальция, обладающий высокой растворимостью. Комплексонаты выводятся из котла с продувочной водой.

При среднем давлении концентрация солей жесткости велика, расход трилона Б большой и стоимость обработки воды также велика.

Интенсивное разложение комплексоната железа с образованием защитной пленки происходит при температурах воды, соответствующих высокому и сверхвысокому давлению. Но при сверхвысоком давлении (P = 15,5 МПа, tS = 343°С) разлагаются комплексонаты кальция и образующийся гидроксид кальция внедряется в железооксидную пленку и нарушает ее сплошность. Для повышения термической стойкости комплексонатов кальция дозируют щелочь - едкий натр NaOH (комплексонно-щелочной режим). В чистом отсеке барабана поддерживается рН = 10,4.

Комплексон дозируют в воду периодически (8 ч/сут в течение 2 сут), а NaOH - непрерывно.

Комплексонно-щелочной режим имеет ряд преимуществ перед фосфатным (при сверхвысоком давлении): содержание железа в котловой воде в растворенном виде увеличивается, вывод его с продувкой эффективнее; в насыщенном паре Fe меньше, так как коэффициент распределения снижается в 2,5 раза; толщина отложений на стенке меньше в несколько раз, теплопроводность - выше; межпромывочный период удлиняется в несколько раз; нет необходимости в консервации при останове котла для защиты стояночной коррозии.

12.4.Влияние внутрибарабанных устройств на качество котловой воды и насыщенного пара

Качество насыщенного (при ДКД) и перегретого пара в прямоточном котле определяется концентрацией примесей в питательной воде. В барабанном котле качество насыщенного пара зависит не только от качества питательной воды, но и от методов организации водного режима в самом котле, в его барабане. К таким методам относится организация ступенчатого испарения и продувки, сепарационных устройств и промывки пара.

Эффективность ступенчатого испарения и продувки котла рассмотрена в §11.7. При достаточно высоком качестве питательной воды выполняют двухступенчатую схему испарения при паропроизводительности второго (солевого) отсека 3…5% (иногда 10%). Солевой отсек внутри барабана устанавливают на мощных котлах редко, так как возможный в переходных режимах переток воды или переброс через перегородку из солевого отсека в чистый снижает эффект от ступенчатого испарения. Второй отсек организуется в выносном циклоне, пар из него направляется в барабан на промывку.

При достаточно больших концентрациях примеси в питательной воде возможна организация трехступенчатой схемы испарения. Паропроизводительность второго и третьего отсеков в этом случае выбирается в пределах 3…10%.

Сепарация капельной влаги из пара и сепарационные устройства рассматривались в гл.9. Для обеспечения высокой чистоты насыщенного пара в барабанах без промывки пара унос влаги не должен превышать 0,02% паропроизводительности. При промывке пара из-за того, что места для организации сепарационных устройств остается мало, допускается влажность пара до промывочного устройства и после него в размере 0,05% (в некоторых случаях - до 0,1%). Увеличение влажности компенсируется эффективной промывкой пара.

Промывка насыщенного пара питательной водой проводится путем барботажа его через слой воды на промывочном устройстве, гидравлическая работа которого анализировалась в гл.9. На рис.12.3 показана принципиальная схема промывки пара, а на рис.12.4 обозначены потоки воды и примеси. Пар из контуров циркуляции барботирует через слой котловой воды и выходит из нее с концентрацией определяемой по формуле

(12.2)

где ω1 - влажность пара; Кp1 - коэффициент распределения в системе котловая вода - насыщенный пар.

Пар поступает на паропромывочное устройство и барботирует через слой воды. При этом в системе промывочная вода - пар устанавливается новое равновесное состояние, соответствующее коэффициенту распределения Кp2.

Так как концентрация примесей в промывочной воде Спром меньше Ск.в, то концентрация примесей в паре Сп уменьшается (по сравнению с Cп`), а примеси в количестве ( Cп` - Сп) переходят в промывочную воду. Концентрация примесей в паре после промывки будет равна

(12.3)

Промывочная вода поступает в водяной объем барабана, и концентрация примесей в котловой воде Ск.в связана с Спром формулой (11.42), где вместо Сп.в необходимо подставить Спром

(12.4)

Примем ω = ω1 = ω2 = 0,05%; Kp = Кp1 = Кp2 = 1%, р = 1%.Определим степень очистки пара от примесей после промывки. Для этого разделим выражение для Cп` на Cп

(12.5)

Таким образом, пар после промывки стал чище почти в 50 раз (при принятых значениях ω, Кp ,р). С увеличением Кp эффективность промывки снижается.

Формула (12.5) показывает, что относительное снижение концентрации примеси в паре при промывке зависит от продувки р - с ростом продувки эффективность промывки падает, но при этом абсолютные величины Cп` и Cп снижаются (уменьшаются Cк.в). В результате качество пара Сп мало зависит от продувки: при Кp + ω = 0 вообще не зависит, а при Кp + ω =10% увеличение продувки с 1 до 5% приводит к снижению Сп всего в 1,7 раза. Поэтому продувка в рассматриваемом случае должна выбираться не по Сп, а по концентрации примесей в котловой воде Ск.в, влияющей на интенсивность отложения примесей в экранных трубах. При двухступенчатой схеме испарения оптимальная паропроизводительность второй ступени nII при промывке пара составляет 3%.

12.5.Химические очистки паровых котлов

Предпусковые химические очистки котла проводятся с целью удаления окалины и песка, используемого при гибе труб при монтаже, продуктов коррозии.

Для удаления взвесей (грата, песка) сначала производят интенсивную водную промывку труб со скоростью воды 1…2 м/с. После этого проводят щелочение поверхностей раствором аммиака с добавлением поверхностно-активных соединений.

Основным этапом очистки является удаление оксидов железа. Для этого используют растворы кислот. Из минеральных кислот чаще всего применяют соляную кислоту. Поскольку С1-ион отрицательно влияет на аустенитную сталь, очистке соляной кислотой подвергаются поверхности нагрева до встроенной задвижки. Недостатком соляной кислоты является и тот факт, что оксиды железа переходят в воду в виде крупной взвеси, что может привести к забиванию отдельных труб и участков коллекторов.

Более полную отмывку отложений продуктов коррозии обеспечивает раствор лимонной кислоты.

Для предпусковых очисток прямоточных и барабанных котлов широко применяются различные композиции (смеси) трилона Б с органическими кислотами (с лимонной, винной и т.п.). Такие композиции обладают повышенной по сравнению со стехиометрической железоемкостью. Химическая счистка проводится при температуре 100…120°С.

Предпусковая очистка оборудования ТЭС при относительно небольших загрязнениях проводится раствором пероксида водорода (при 70°С с концентрацией Н2О2 до 800 мкг/кг). Одновременно при этом происходит пассивация стали.

Эксплуатационные химические очистки проводятся для удаления отложений, образующихся с той или иной скоростью при всех водно-химических режимах ТЭС. Необходимость очистки определяется по температурному режиму труб, количеству отложений.

Оптимальным является водный режим, при котором химические очистки можно проводить с большим интервалом, совмещая их с капитальным или расширенным текущим ремонтом.

Для проведения очисток используется соляная кислота с ингибиторами, замедляющими скорость взаимодействия соляной кислоты с металлом трубы. Лимонная кислота удаляет не только отложения продуктов коррозии, но и соединения кальция, однако кислота не пассивирует поверхности труб.

Парокислородная обработка (смесь перегретого пара и кислорода) поверхностей котлов приводит к разрушению и удалению внутритрубных отложений и созданию плотной равномерной защитной пленки магнетита. Этот метод применяется при загрязненности труб до 200 г/м2. При большей загрязненности можно провести химическую очистку ингибированной соляной кислотой, а затем - парокислородную обработку.

В некоторых случаях (при режиме ГАВР, ухудшенном качестве питательной воды, увеличенных присосах охлаждающей воды и т.п.) возникает необходимость проведения более частых химических очисток. Учитывая, что наибольшее количество отложений образуется в НРЧ, применяют упрощенные методы локальной химической очистки. Очистку потоков пароводяного тракта проводят раздельно. Горячая (150°С) деаэрированная вода из деаэратора бустерными насосами подается в промываемый контур, скорость воды в трубах 1,5…2,0 м/с. Сброс воды производят перед встроенной задвижкой (задвижка закрыта). Раствор двух- или трех-замещенной аммонийной соли ЭДТК дозируют в соединительный трубопровод или коллектор перед очищаемой поверхностью (НРЧ). После очистки (4…6 ч) проводят промывку горячей водой (1…2 ч). При контакте раствора ЭДТК с чистой поверхностью происходит коррозия металла. Поэтому в раствор добавляют ингибиторы кислотной коррозии, снижающие скорость коррозии углеродистой стали при химической очистке в 20…50 раз.

Комплексоны используются для химической очистки поверхностей нагрева котлов среднего давления и парогенераторов АЭС на ходу, т.е. во время их нормальной работы. Подача комплексона (трилона Б, двухзамещенной соли ЭДТК) в количестве, превышающем в 1,2…1,5 раза стехиометрическое соотношение, приводит к комплексованию катионов не только из воды, но и из отложений. Комплексонаты железа и других катионов (растворенная форма) удаляются из цикла с продувочной водой. Очистка на ходу производится периодически.

12.6.Консервация паровых котлов

При любых остановах котлов со снижением давления среды до атмосферного и возможностью попадания в него кислорода воздуха и конденсации влаги протекает стояночная коррозия. Средняя скорость коррозии при температуре 20°С составляет 0,05 г/(м2∙ч). Суточный простой энергоблока 300 МВт с незаконсервированными и неосушенными поверхностями нагрева общей площадью около 30 000 м2 приводит к образованию в контуре до 50 кг оксида железа.

Лекция "18 Задача о кратчайшем маршруте" также может быть Вам полезна.

При останове котлов для защиты от стояночной коррозии проводится их консервация. При останове на срок до 15 ч прямоточных котлов или до 1 сут барабанных котлов рекомендуется проводить консервацию методом избыточного давления, а на срок до 5 сут - путем сухого останова. При простое от 5 до 60 сут рекомендуется гидразинно-аммиачная консервация или использование контактных ингибиторов. При останове на срок более 60 сут применяются контактные ингибиторы.

Избыточное давление (0,l5…0,20 МПа) в котле при кратковременном останове создается деаэрированной водой. Для лучшего эффекта в воду можно добавить щелочь (NaOH - до 2 кг/м3 ).

Консервацию сухим способом осуществляют, заполняя котел инертным газом (азотом). При этом воздух должен быть вытеснен полностью из котла.

Консервация котла при останове на длительный срок может проводиться путем прокачки по замкнутому контуру (включая деаэратор и питательные насосы) раствора гидразина (до 200 мг/кг) и аммиака (рН = 0,5…11). В этот контур не включаются ПНД и конденсатор, содержащие латунные трубки.

Контактные ингибиторы образуют на поверхности защитную пленку, сохраняющуюся длительное время в условиях капитальных или текущих ремонтов. Защитная пленка создается путем прокачивания в течение 1…2 ч через котел раствора ингибитора при температуре не выше 100°С. Затем этот раствор сливают в специальный бак для хранения до повторного использования.

При некоторых водных режимах на поверхности металла создается устойчивая защитная пленка, и в этом случае консервация не требуется. При любом водном режиме защитную пленку можно создать сразу же после останова котла путем подачи в котел аммиачного раствора трилона Б перегретым паром (350…370°С, давление 1,0…1,3 МПа) от постороннего источника (из линии собственных нужд станции) по специальным трубопроводам. Паровой раствор частично отмывает поверхности котла с образованием комплексонатов железа, которые подвергаются термическому разложению на поверхностях котла. Консервация заканчивается при увеличении значения рН в сбросном паре до 9, после чего котел обеспаривается, дренируется и вскрывается.

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5259
Авторов
на СтудИзбе
420
Средний доход
с одного платного файла
Обучение Подробнее