Популярные услуги

Курсовой проект по деталям машин под ключ
КМ-4. Типовое задание к теме косвенные измерения. Контрольная работа - любой вариант за 5 суток.
КМ-3. Задание по Matlab/Scilab. Контрольная работа - любой вариант за 3 суток!
КМ-3. Типовое задание к теме прямые измерения. Контрольная работа (ИЗ1) - любой вариант!
Курсовой проект по деталям машин под ключ в бауманке
ДЗ по ТММ в бауманке
Все лабораторные под ключ! КМ-1. Комбинационные логические схемы + КМ-2. Комбинационные функциональные узлы и устройства + КМ-3. Проектирование схем
Любая лабораторная в течение 3 суток! КМ-1. Комбинационные логические схемы / КМ-2. Комбинационные функциональные узлы и устройства / КМ-3. Проектирование схем
Допуски и посадки и Сборочная размерная цепь + Подетальная размерная цепь
ДЗ по матведу любого варианта за 7 суток
Главная » Лекции » Инженерия » Автомобильные двигатели » Силовые и термические нагрузки на детали двигателя

Силовые и термические нагрузки на детали двигателя

2021-03-09СтудИзба

Лекция 10

Силовые и термические нагрузки на детали двигателя.

Введение

Для обеспечения достаточной долговечности и надежности работы деталей необходимо, чтобы абсолютные значения их температур не превосходили допустимых величин, а распределение температуры по телу детали не вызывало возникновения больших температурных напряжений и нарушения геометрии сопрягаемых поверхностей.

Тепловое состояние деталей влияет на прочностные характеристики материалов, из которых они изготовлены на интенсивность отложений на деталях, на условия их смазки, трения, износа, а также не напряжения в деталях.

Температура деталей влияет на рабочую температуру смазочного масла,' а следовательно, на его вязкость, толщину слоя смазки, разделяющего детали трущейся пары, характер трения. Последний вместе с износными характеристиками материалов,

которые также зависят от температурного состояния деталей, определяет темп износа.

Амплитуда изменения напряжений от сил давления газов меньше, чем амплитуда термических напряжений, но частота изменения напряжений от сил давления газов существенно выше. Поэтому и они могут играть существенную роль в усталостном |] разрушении детали. Для ряда деталей определяющую роль играют термические напряжения, и при критическом их уровне деталь выдерживает недостаточное количество тепловых ударов, что ограничивает срок ее службы.

В последние годы предпринимаются попытки обеспечения надежной работы двигателей с пониженным отводом теплоты при существенно более высокой температуре поверхности гильзы цилиндра и использовании специальных смазочных материалов.

Рекомендуемые материалы

Методы управления тепловое напряженность к естественно связаны с факторами,

ее определяющими. Конструкциям деталей, применяемым материалам и условиям охлаждения соответствуют конкретные допустимые уровни тепловых нагрузок.

1. Силы и моменты нагружающие детали КШМ

2.Температурные напряжения и деформации

3. Температурное состояние деталей цилиндропоршневой группы

4. Тепловые нагрузки на детали двигателя и их тепловая напряженность

1. Силы и моменты нагружающие детали КШМ

При работе двигателя на кривошипно-шатунный механизм действуют силы давления газов и силы инерции. Силы инерции масс кривошипно-шатунного механизма, движущихся с переменными по величине и направлению скоростями, возникают на всех режимах работы двигателя и для некоторых деталей этого механизма являются основными расчетными силами. Последнее связано с тем, что в высокооборотных двигателях силы инерции значительно превосходят силы газов и поэтому являются основными при расчете деталей на выносливость (усталостную прочность).

В зависимости от характера движения силы инерции масс кривошипно-шатунного механизма делятся на: 1) силы инерции масс, движущихся возвратно-поступательно; 2) силы инерции вращающихся масс; 3) силы инерции масс, совершающих сложное движение.

Шатун совершает сложное поступательно-качательное движение в плоскости, перпендикулярной к оси коленчатого вала. В целях упрощения динамических расчетов кривошипно-шатунного механизма принимают приближенный способ определения сил инерции шатуна, заменяя на основании законов механики движение фактической массы шатуна движением трех или двух условных масс.

При приведении массы шатуна к трем массам одну из них — массу т1 (рисунок ,

а — сосредотачивают на оси верхней головки шатуна, другую — т2 — на оси нижней головки шатуна, а третью — тъ — в центре тяжести шатуна.

Для обеспечения динамического подобия шатуна с трехмассовой системой необходимо соблюдение следующих условий:

1) сумма всех масс должна быть равна массе шатуна тш;

2) общий центр тяжести трех масс должен совпадать с центром тяжести шатуна;

3) сумма моментов инерции всех масс относительно оси, проходящей через центр тяжести шатуна, должна быть равна моменту инерции шатуна Jш относительно той же оси;

4) массы должны располагаться на одной прямой, проходящей через центр тяжести шатуна.

Согласно статистическим данным для автомобильных двигателей можно рекомендовать

Описание: image001Описание: image002Описание: image003

Описание: image004

Рис.52.- Приведение масс: а- шатуна; б – кривошипа

К вращающимся массам кривошипно-шатунного — механизма относятся масса неуравновешенных частей кривошипа тк, и часть массы шатуна т2.

Массу неуравновешенных частей кривошипа приводят к оси шатунной шейки. При этом центробежная сила приведенной массы тк должна быть равна сумме центробежных сил всех неуравновешенных частей кривошипа при условии постоянства угловой скорости вращения со.

Масса частей кривошипно-шатунного механизма, движущихся возвратно-поступательно,

Описание: image005

где тп — масса комплектного поршня, включающая массы собственно поршня, поршневых колец, поршневого пальца и заглушек или стопорных колец;

т2 — часть массы шатуна, отнесенная к оси поршневого пальца.

Массу т полагают сосредоточенной в центре пальца поршня.

Сила инерции Pw масс, движущихся возвратно-поступательно, действует по оси

цилиндра и считается положительной, если она направлена к оси коленчатого вала, и отрицательной, если она направлена от нее.

Для центрального кривошипно-шатунного механизма сила инерции

Описание: image006илиОписание: image007

где Pwl — сила инерции первого порядка; период изменения этой силы — один оборот коленчатого валаОписание: image008; ;

Pwll - сила инерции второго порядка; период изменения этой силы — полоборота коленчатого вала; Описание: image009;

Описание: image010

Рис.53. - График сил, действующих в кривошипно-шатунных механизме

На рисунке , б построены диаграммы сил Pw], PW]I и Pw в зависимости от угла поворота коленчатого вала ср для одного цикла четырехтактного двигателя.

Сила инерции вращающихся масс действует по радиусу кривошипа и определяется по формуле

PR =-mRRco2 -const.

Закон изменения давления газов на поршень по его ходу или углу поворота коленчатого вала обычно задается индикаторной диаграммой. Последнюю строят по данным теплового расчета двигателя или получают экспериментально.

На рисунок , а приведена индикаторная диаграмма, а на рисунок , б показана ее развертка по углу поворота коленчатого вала.

Вертикальная слагающая силы избыточного давления на поршень, откладываемая по оси ординат развернутой диаграммы, определяется по формуле

Описание: image011

где рг — давление газов в цилиндре по индикаторной диаграмме;

ро — давление в картере двигателя;

Fn — площадь поршня.

Сила Рг считается положительной, если она направлена к оси коленчатого вала.

Суммарная сила, действующая по оси цилиндра, складывается из силы избыточного давления газов на поршень и силы инерции масс, движущихся возвратно-поступательно,

Описание: image012

На рисунке 52 , б и в приведены графики сил Pw, Рг и Р2 в зависимости от угла поворота коленчатого вала Описание: image013.

Разложим силу на две составляющиеОписание: image014

Описание: image015

Описание: image016

Сила Описание: image017- направлена по нормали к стенке цилиндра и прижимает к ней поршень.

СилаОписание: image018 действует вдоль оси шатуна.

Сила Описание: image017положительна, если она направлена в сторону, противоположную направлению вращения, и отрицательна, если она направлена в сторону вращения. Сила Описание: image018положительна, когда она сжимает шатун, и отрицательна, когда растягивает его.

Перенесем силу Описание: image018вдоль линии действия в точку А на оси шатунной шейки и разложим на силу Описание: image019, действующую по касательной к оси кривошипа (тангенциальная сила), Описание: image020

и силуОписание: image021 , действующую по оси кривошипа (нормальная сила),

Описание: image022

Сила Описание: image019 положительна, если она направлена в сторону вращения кривошипа, при противоположном направлении сила Описание: image019 отрицательна. Сила Описание: image021положительна, если она направлена к оси коленчатого вала (сжимает щеку), и отрицательна, если она действует от оси коленчатого вала (растягивает щеку).

Для построения графиков указанных сил по углу поворота коленчатого вала значения тригонометрических функции Описание: image023 ;Описание: image024;Описание: image025; Описание: image026

табличных данных в зависимости отОписание: image027.

На рисунке 53; г, д и е приведены зависимости сил Описание: image019,Описание: image021 и Описание: image017в зависимости от угла поворота коленчатого вала Описание: image013.

Примечание: Чтобы избежать вычислений с большими числами в расчет вводят удельные нагрузки, т. е. силы делят на площадь поршня:

Описание: image028;Описание: image029 ; Описание: image030и т.д.

При работе рядного двигателя крутящий момент, действующий на первую от переднего конца коленчатого вала шатунную шейку,

Описание: image031

, где Описание: image019 — суммарная тангенциальная сила, определяемая по формуле ;

Описание: image032— радиус кривошипа.

Для V-образного двигателя сила Описание: image019равна сумме тангенциальных сил,

действующих на рассматриваемую шатунную шейку коленчатого вала как от правого, так и от левого цилиндров. Крутящий момент, передаваемый через любую коренную шейку коленчатого вала,

Описание: image033

где Описание: image034— сумма крутящих моментов, действующих на всех предыдущих коленах

вала, начиная от его переднего конца.

Крутящий момент, передающийся через колено вала, равен сумме двух моментов. Один из них, создаваемый тангенциальной силой, действующей на данное колено, зависит только от угла поворота коленчатого вала. Другой, представляющий собой суммарный крутящий момент от сил, действующих в цилиндрах, расположенных до рассматриваемого колена со стороны переднего конца вала, зависит, кроме того, от числа цилиндров и порядка работы двигателя.

Большое влияние на динамику двигателя в целом оказывает его порядок работы, от которого зависят фазы сил и моментов, действующих в отдельных цилиндрах. При выборе порядка работы двигателя стремятся обеспечить: 1) чередование вспышек через равные промежутки времени, что обусловливает более равномерную работу двигателя; 2) равномерное распределение смеси (воздуха) по цилиндрам; 3) возможно лучшее уравновешивание двигателя, что уменьшает его вибрации; 4) расположение последовательно работающих цилиндров возможно дальше один от другого, что необходимо для уменьшения нагрузок на подшипники коленчатого вала; 5) возможно меньшую амплитуду крутильных колебаний коленчатого вала, чтобы снизить дополнительные (знакопеременные) напряжения кручения в его элементах..

Для получения наибольшей равномерности крутящего момента на коленчатом валу двигателя необходимо, чтобы одноименные процессы в цилиндрах происходили через одинаковые углы поворота коленчатого вала. Для двигателя, имеющего i цилиндров, одноименные процессы в цилиндрах при четырехтактном цикле должны следовать черезОписание: image035 угла поворота коленчатого вала, а при двухтактном цикле – черезОписание: image036

2.Температурные напряжения и деформации

Температурные напряжения и деформации. Нагрев деталей д. в. с. является следствием осуществления в нем рабочих процессов. Если деталь д. в. с. при изменениях температуры лишена возможности свободно расширяться или сжиматься, то в ней возникают тепловые напряжения. Тепловую прочность материала характеризуют отношением предела текучести материала к фактору Јcr/[/l(l-m)], где а - коэффициент линейного расширения материала; т - коэффициент поперечной деформации или отношение величины поперечного сжатия к продольному удлинению; X - коэффициент теплопроводности.

При переходе в область температур, при которых начинают меняться показатели прочности, упругости, линейного расширения, теплопроводность обычных материалов, применяемых для изготовления деталей д. в. с, следует пользоваться понятиями жаропрочности и жаростойкости. Первое характеризует способность длительно выдерживать напряжение в условиях высоких температур, второе -способность сопротивляться коррозии при этих температурах.

Тепловые деформации меняют взаимное расположение деталей в узлах, имеющих различную рабочую температуру или изготовленных, из различных материалов. Часто это приводит к возникновению термических зазоров или натягов в сочленениях, что учитывают при холодной сборке механизмов в основном или ремонтном производстве. Обычно термические напряжения сочетаются с напряжениями от внешних силовых нагрузок. Тепловую деформацию элемента детали оценивают по зависимостям вида Описание: image037, учитывающим ее конструкцию, коэффициент линейного расширения материала и ее температуры в рабочем и нерабочем состоянии.

3. Температурное состояние деталей цилиндропоршневой группы

Для обеспечения достаточной долговечности и надежности работы деталей необходимо, чтобы абсолютные значения их температур не превосходили допустимых величин, а распределение температуры по телу детали не вызывало возникновения больших температурных напряжений и нарушения геометрии сопрягаемых поверхностей.

Высокая температура детали может привести к значительному ухудшению физико-механических свойств материала, изменению его структуры (например, рост чугуна). С ростом температуры обычно наблюдается уменьшение предела прочности металла ов

модуля упругости Е, значительно изменяется коэффициент линейного удлинения S, коэффициент теплопроводности Л и другие параметры. Высокий нагрев приводит к изменению твердости материала.

На ряд свойств материала оказывает влияние цикличность тепловых и механических нагрузок. Таким образом, оценка предельных температур для деталей должна осуществляться на основании многостороннего анализа условий работы детали и свойств ее материала.

Опыт двигателестроения показывает, что предельной температурой головки поршня, выполненной из чугуна, следует считать 400-450 °С, из стали 400-475(500)

°С, из легких сплавов 200-250 °С (для сплавов типа АЛ-1) и 300-350 °С (для сплавов типа АК-4).

Характерной температурой, по которой оценивают надежность работы уплотнительных колец, принято считать максимальную температуру поршня в зоне их расположения tm (практически — температура верхней кромки канавки под первое уплотнительное кольцо). При высокой температуре в этой зоне либо ухудшаются условия смазки колец, возрастает износ, либо наблюдается интенсификация отложений в канавках под кольца. Это приводит к быстрой потере подвижности колец, к нарушению уплотнения и отвода теплоты от поршня. Предельно допустимая величина температуры tm, при которой еще возможна надежная работа колец зависит от ряда факторов (свойств масла, конструктивных особенностей колец, требований к двигателю и т. п.). Обычно для двигателей, от которых требуются повышенные надежность и долговечность, температура tm редко превышает 200 °С. Для двигателей многооборотных форсированных с

ограниченным моторесурсом tm = 220-^245 °С.

Предельная температура зеркала цилиндра в области работы поршневых колец определяется с учетом необходимости обеспечения хороших условий смазки, снижения механического и коррозионного износов. Практика доводки и эксплуатации двигателей, исследования на моделях показывают, что превышение 200°С на поверхности трения приводит к резкому нарастанию скорости механического износа. Считается нежелательным превышение температуры зеркала цилиндра этой величины. Необходимо отметить, что с увеличением содержания серы в топливе увеличивается количество отложений и их твердость, что приводит к повышению износа.

При значительном количестве серы в топливе в определенных условиях возможно преобладание «химических износов». Сера и сернистые соединения, входящие в состав

топлива, при его сгорании в цилиндре двигателя преобразуются в SO2 и SO3, которые в

присутствии паров воды образуют кислоты, вызывающие коррозию деталей цилиндропоршневой группы. В областях пониженной температуры, где возможна конденсация паров воды, наблюдается быстрое нарастание износа.

4. Тепловые нагрузки на детали двигателя и их тепловая напряженность

Под тепловой нагрузкой понимают значение удельного теплового потока, передаваемого от рабочего тела к поверхности детали. Теплота передается от РТ к поверхности деталей радиацией и теплоотдачей.

Роль радиации особенно велика в дизелях в связи с тем, что в них имеет место преимущественно диффузионное горение, сопровождающееся обильным образованием и последующим частичным выгоранием сажи. Содержание в пламени сажи является причиной высокой степени его черноты, а поэтому высокой излучательной способности пламени. Согласно измерениям, температура дизельного пламени превышает значения средней по объему термодинамической температуры.

Высокие значения температуры пламени и степени его черноты определяют высокую долю теплоты, передаваемой излучением, в общем теплообмене (по некоторым оценкам, до 45% и более).

Локальные тепловые потоки, передаваемые излучением через отдельные участки деталей, зависят от расположения участка по отношению к факелу и поэтому неодинаковы. Например, для дизелей с камерой в поршне некоторые зоны таких деталей, как гильза цилиндра, головка цилиндра и сам поршень, экранированы телом поршня от факела в период наиболее интенсивного излучения.

Интенсивность теплоотдачи определяется в большой мере локальными условиями смесеобразования и тепловыделения. Проведенные исследования выявили, что на распределение тепловой нагрузки по деталям оказывают влияние не столько интенсивность и характер движения заряда, в цилиндре и камере сгорания, созданные при сколько движение заряда, инициируемое при сгорании, а также распределение сгорающего топлива по объему камеры сгорания, зависящее от количества и гения топливных струй, размеров и конфигурации камеры сгорания. Последние факторы пределяют локальную температуру заряда.

Выявлены нестационарность теплообмена в поршневых двигателях и существенно неравномерное распределение тепловой нагрузки по деталям. Нестационарность теплообмена определяется переменностью во времени всех факторов, влияющих на радиацию и теплоотдачу (параметров состояния заряда, его скорости, в дом числе пульсационной ее составляющей, структуры пламени и т. д.). Для характеристики нестационарности теплообмена отметим, что максимальное значение удельного теплового потока может в несколько десятков раз превышать его среднее по времени значение. Наибольшая часть теплоты передается в период интенсивного сгорания. Так, примерно за 1до времени цикла (от 10° до ВМТ до 60° после ВМТ) от заряда к стенкам деталей передается до 70% всей теплоты, теряемой за цикл в четырехтактном дизеле автотракторного типа. Если определить теплоту, передаваемую за отдельные такты цикла, то окажется, что основная часть теплоты передается за такт расширения (рабочий ход) — до 90%. Доля теплообмена за такт выпуска в большинстве случаев не превышает 10%.

Описание: image038

Рис.54- Распределение тепловой нагрузки по деталям дизеля:

а - поршень; б - головка цилиндра; в - гильза цилиндра; RKрасстояние до зоны измерения от оси цилиндра R = D/2; 1ГК - расстояние до зоны измерения от верхнего торца гильзы; 1Г - длина гильзы

Рисунок 54 иллюстрирует неравномерность распределения средней но времени тепловой нагрузки по поверхностям различных деталей. В конкретном случае по поверхности поршня удельный тепловой поток изменяется в 2,5 раза, по поверхности головки цилиндра — в 2,5 раза, по поверхности гильзы цилиндра — в 2,3 рази (в пределах зон измерения). Максимальное значение тепловой нагрузки в автотракторных дизелях с наддувом достигает 600 кВт/м2 и более. Максимальная нагрузка имеет место, как правило, на номинальном режиме работы двигателя.

В дизелях с камерой сгорания в поршне неравномерность распределения тепловой нагрузки растет при уменьшении относительного диаметра камеры сгорания. В дизелях с разделенными камерами сгорания неравномерность распределения удельного теплового потока выше, чем в дизелях с неразделенной камерой сгорания. Уровень тепловых нагрузок в большой мере определяется степенью форсирования (литровой мощностью). Он, как правило, выше в двухтактных двигателях. Тепловая нагрузка заметно возрастает при увеличении нагрузки, частоты вращения, рк и Тк, При заданной внешней нагрузке уменьшения тепловой нагрузки можно достигнуть повышением а путем соответствующего выбора системы наддува и введения промежуточного охлаждения надувочного воздуха. С ростом угла опережения впрыскивания (зажигания) тепловая нагрузка также увеличивается вследствие повышения максимальных давления и температуры цикла.

С течением времени после начала эксплуатации нового или отремонтированного двигателя тепловые потоки, передаваемые от РТ к деталям, уменьшаются вследствие отложения на деталях продуктов неполного окисления, крекинга и полимеризации смазочного масла и топлива. В дальнейшем наблюдается тенденция к стабилизации передаваемых потоков.

При работе на переменных (неустановившихся) режимах передаваемые от РТ к детали тепловые потоки изменяются не только в течение каждого цикла,, но также от цикла к циклу. Резкое изменение средних за цикл тепловых нагрузок во времени вследствие разгона, нагружения, разгрузки, остановки двигателя известно под названием теплового удара. Характер и частота тепловых ударов оказывают влияние на надежность работы двигателя.

Термин тепловая напряженность используется для выражения комплексе

явлений, связанных с тепловым состоянием деталей двигателя. Тепловое состояние деталей влияет на прочностные характеристики материалов, из которых они изготовлены на интенсивность отложений на деталях, на условия их смазки, трения, износа, а также не напряжения в деталях. Из опыта известно, что для предотвращения потери подвижности кольца в канавке вследствие отложении кокса температура вблизи канавки под верхнее кольцо не должна превышать 220 °С. Для предотвращения интенсивного закоксование отверстий распылителя температура его носика не должна превышать 180...200 СС. Эти

цифры следует рассматривать как ориентировочные, так как интенсивность отложении зависит не только от температуры, но также от конструкции деталей, других (кроме температурных) условий их работы, качества материалов (в том числе топлива и смазочного масла), технологии обработки деталей и т.д.

Температура деталей влияет на рабочую температуру смазочного масла,' а следовательно, на его вязкость, толщину слоя смазки, разделяющего детали трущейся пары, характер трения. Последний вместе с износными характеристиками материалов,

которые также зависят от температурного состояния деталей, определяет темп износа. При критических условиях возможен переход жидкостного трения граничное или даже

полусухое.

Амплитуда изменения напряжений от сил давления газов меньше, чем амплитуда термических напряжений, но частота изменения напряжений от сил давления газов существенно выше. Поэтому и они могут играть существенную роль в усталостном |] разрушении детали. Для ряда деталей определяющую роль играют термические напряжения, и при критическом их уровне деталь выдерживает недостаточное количество тепловых ударов, что ограничивает срок ее службы.

Степень форсирования дизеля наддувом также ограничивается тепловой напряженностью его деталей. Наиболее теплонапряженными являются головка цилиндра и поршень. Тепловое состояние гильзы цилиндра также важно, так как оно существенно влияет на тепловое состояние поршня. Наддув приводит к увеличению тепловых нагрузок на детали и, как следствие, к увеличению их температур и градиентов. Наиболее велики тепловые нагрузки в центральной части головки цилиндра. Тепловые нагрузки на поршень несколько ниже, а на гильзу цилиндра меньше, чем на головку, в 4...5 раз. Измерения, выполненные на деталях дизеля ЯМЗ с наддувом, выявили, что тепловые нагрузки различных зон деталей могут отличаться в 12 раз и более. Неравномерное распределение тепловой нагрузки на детали вместе с неодинаковым термическим сопротивлением различных зон деталей имеет следствием неравномерное распределение температуры в деталях. Так, перепады температуры вблизи «огневой» поверхности чугунной головки цилиндра могут достигать 180 °С, поршня из алюминиевого сплава — 100 °С, чугункой гильзы — 70 °С. Практические испытания показали, что максимальная температура чугунной головки цилиндра и поршня из алюминиевого сплава не должна превышать 350 °С, головки цилиндра из алюминиевого сплава — 240 °С, гильзы цилиндра —160...180 °С;

Для гильзы цилиндра ограничивается и минимальная температура в связи с ее влиянием на условия конденсации водяного пара, особенно при применении топлив, содержащих серу. Конечно, и приведенные цифры должны рассматриваться как ориентировочные, так как на предельно допустимую температуру влияют конструкция я конкретные условия работы детали. Последнее может быть проиллюстрировано приведенными выше различиями в максимально допустимой температуре поршней и головок цилиндров, изготовленных из алюминиевого сплава. Для головок цилиндра по условиям нагружения предельная температура значительно ниже.

Методы управления тепловое напряженность к естественно связаны с факторами,

ее определяющими. Конструкциям деталей, применяемым материалам и условиям охлаждения соответствуют конкретные допустимые уровни тепловых нагрузок.

Справедливо и другое утверждение — определенному уровню тепловых нагрузок должен соответствовать правильный выбор прочих факторов, обусловливающих тепловую

напряженность деталей.

В последние годы предпринимаются попытки обеспечения надежной работы двигателей с пониженным отводом теплоты при существенно более высокой температуре поверхности гильзы цилиндра и использовании специальных смазочных материалов.

Существенному снижению температуры поршня, особенно критических его зон, способствует применение охлаждаемых конструкций. Снижению температуры и градиентов температур в деталях способствуют теплоизолирующие покрытия. При этом высокими оказываются температуры и градиенты температур в самом покрытии, отсюда повышенные требования к их свойствам. Заметного снижения тепловой напряженности можно достигнуть и путем рационального конструирования системы охлаждения. При этом, как правило, системы жидкостного охлаждения эффективнее систем воздушного охлаждения. Под эффективностью здесь понимается свойство обеспечения заданного теплового состояния при минимальных затратах работы на привод агрегатов системы охлаждения.

При конструировании систем охлаждения стремятся к увеличению интенсивности охлаждения наиболее нагретых участков без увеличения общего количества отводимой в систему теплоты. В частности, заметного снижения температуры в перемычке между клапанами головки цилиндра можно достигнуть, используя для подвода жидкости сверленые каналы.

В процессе эксплуатации тепловая напряженность двигателя может возрасти вследствие:

 эксплуатации дизеля в условиях высокогорья или чрезмерно высоких температур окружающей среды;

 отложения накипи в рубашках охлаждения двигателей с жидкостным охлаждением или загрязнения оребрения двигателей с воздушным охлаждением;

 нарушений в нормальном протекании процесса сгорания вследствие использования топлив с несоответствующими двигателю физико-химическими и моторными свойствами и несоблюдения оптимальных регулировок систем питания, впрыскивания и зажигания.

При необходимости эксплуатации дизелей в условиях пониженной плотности воздуха целесообразно в соответствии с рекомендациями завода-изготовителя пересмотреть величину предельной подачи топлива. В эксплуатации очень важно сохранять неизменными тепловую эффективность и гидравлические сопротивления охладителя наддувочного воздуха.

Важное значение имеет также сохранение условий охлаждения деталей благоприятными в течение всего срока эксплуатации. Для этого, в частности, необходимо избегать заметных отложений в элементах системы охлаждения.

Безопасные предельные степени форсирования дизеля наддувом в большой мере зависят от принятого способа смесеобразования или типа камеры сгорания. При большой величине dKC/D камеры сгорания обеспечивают более равномерное распределение

тепловой нагрузки по их поверхности и, как следствие, снижение перепадов температуры. Это обеспечивает возможность достижения более высокой степени форсирования наддувом без превышения максимально допустимых температур деталей.

Контрольные вопросы:

Если Вам понравилась эта лекция, то понравится и эта - 24 Общие положения о бюджетных доходах.

1. Какие силы действуют на КШМ при работе ПД?

2. Каким образом классифицируют силы инерции масс КШМ?

3. Какие условия необходимо обеспечить при выборе порядка работы цилиндров?

4. Что характеризуют понятия «жаропрочность» и «жаростойкость»?

5. Что понимается под тепловой нагрузкой и в каких единицах?

6. Почему степень форсирования ПД ограничивается тепловой напряженностью его детали?

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5259
Авторов
на СтудИзбе
420
Средний доход
с одного платного файла
Обучение Подробнее