Популярные услуги

Любое задание БЖД -Определить УЗД
Повышение уникальности твоей работе
Исследование опасности поражения электрическим током в трехфазных электрических сетях напряжением до 1 кВ
Любой реферат по безопасность жизнедеятельности (БЖД и ГРОБ или ОБЖ)
Исследование характеристик искусственного освещения
Исследование эффективности звукоизоляции и звукопоглощения
Исследование методов обеспечения комфортного микроклимата
Реферат по БЖД для студентов 1 курса

Лекция 14

2021-03-09СтудИзба

1. «АВАРИИ  НА  ВЗРЫВООПАСНЫХ  ОБЪЕКТАХ».

2. Общие сведения о взрыве.

3. Характеристика процесса взрыва.

Взрыв - быстро протекающий процесс физического или химического превращения веществ, сопровождающийся освобождением большого количества энергии в ограниченном объеме, в результате которого в окружающем пространстве образуется и распространяется ударная волна, способная создать угрозу жизни и здоровью людей, нанести ущерб предприятиям  экономики  и окружающей среде, стать источником ЧС.

Взрыв представляет собой широкий круг явлений, связанных с очень быстрым выделением значительного количества энергии, сопровождающимся расширением вещества, обладающего избыточной энергией, в среде с меньшим энергетическим потенциалом. Расширение протекает с настолько большой ско­ростью (сотни и  тысячи  м/с), что приводит к резкому  повышению давления, плотности, температуры и сопровождается значительными звуковыми эффектами. Источ­ником энергии при взрыве могут быть как химические, так и физические процессы.

В подавляющем большинстве взрывов, с которыми приходится сталки­ваться на практике, источником выделения энергии являются химические превращения веществ. Это относится как к взрывам, предназначенным для достижения определенных целей (например, в военной области или произ­водственной сфере), так и к взрывам аварийного характера.

Примерами взрывов, энерговыделение при которых обусловлено физи­ческими процессами, могут служить взрывы сжатых газов или взрывы, свя­занные с преобразованием перегретых жидкостей,  когда энергия, выделяющаяся при взрыве, определяется  процессами, связанными с адиабатическим расширением парога­зовых сред. При выливании расплавленного металла  в воду   возможно  испарение,   протекающее взрывным образом вследствие фрагментации капель расплава, быстрой теплоотдачи и перегрева холодной жидкости. Возникающая при этом физическая детонация сопровождается образованием ударной волны.

На практике аварийные взрывы, имеющие физическую природу, встречаются значительно реже, чем взрывы химического происхождения, поэтому далее будут рассматриваться только химические взрывы.

Высвобождение энергии при взрывах в общем случае выражается удельной мощностью, т.е. количеством энергии, выделяемой в единицу времени. При химических взрывах скорость энерговыде­ления определяется скоростью распространения  пламени в соответствующей взрывоопасной среде. Для различных твердых и жидких взрывчатых веществ эта скорость  может  достигать 2-9 тыс.м/с, т.е. в несколько раз превосходить скорость звука в невозмущенной  среде.

Рекомендуемые материалы

Возможное суммарное выделение энергии при взрыве называется энер­гетическим потенциалом взрыва и определяет его масштабы и последствия. Для твердых и жидких конденсированных ВВ этот показатель зависит от  удельного энергетического потенциала вещества, находящегося в диапазоне 1.5 - 7.5 МДж/кг.

Следует отметить, что при определении этого показателя для твердого или жидкого конденсированного  взрывчатого вещества, в значение массы входят все его составляющие, т.е. части, играющие роль и горю­чего, и окислителя (в основном кислорода), и инертной компоненты.

Удельная теплота взрыва парогазовых   смесей рассчитывается для их стехиометрического[1] состава  либо по горючему веществу,  либо  по  массе  смеси. Так например теплота сгорания водорода по горючему веществу составляет 120 МДж/кг. (для  сравнения  соответствующий показатель троти­ла - 4520 кДж/кг).

(Это обстоятельство использовано при создании боеприпасов объемно­го взрыва. В таких боеприпасах сначала подрывается вспомогательный за­ряд, разрушая корпус, содержащий горючее. Горючее распыляется в возду­хе, образуя в смеси с ним газовое облако, заполняющее негерметизиро­ванные полости и укрытия  поражаемого  помещения. После некоторой задержки, необходимой для формирования облака смеси по возможности близкой к стехиометрическому составу, оно подрывается при помощи детонатора. В результате, например, мощность взрыва боеприпаса, содержащего этиленоксид, в 3-5 раз превосходит мощ­ность взрыва боеприпаса, начиненного тротилом в количестве, равном массе этиленоксида. Увеличение мощности достигается за счет того, что в качестве окислителя при взрыве этиленоксида используется воздух, находящийся на месте взрыва, т.е. не входивший в состав боеприпаса).

4. Единство процессов горения и взрыва.

В специальной  технической  литературе установились определенные подходы и тер­минология при рассмотрении пожаров, взрывов и связанных с ними проб­лем. В случаях, когда процессы окисления протекают сравнительно мед­ленно, без образования ударной волны явления рассматриваются как горе­ние. Аналогичные процессы во взрывчатых средах протекают значитель­но быстрее, чем при обычном горении, и определяются как взрыв.

Различают два вида взрывного горения: дефлаграционное и детонационное. По своей природе они имеют много общего, близки и химические процессы, протекающие при этих явлениях. Основное  отличие  этих  видов  горения  в  природе  процессов,  определяющих  скорость  распространения  пламени.

Дефлаграционное горение.

В основе механизма распространения дефлаграционного горения лежит теплопередача в соседние с зоной горения участки материала. Скорость распространения процесса зависит от теплоемкости материала, его теп­лопроводности и некоторых других свойств.

Детонационное горение.

При детонации, как и при дефлаграционном горении, реакция протека­ет в узкой зоне, перемещающейся по веществу, но механизм ее распрост­ранения принципиально другой. Причиной инициализации экзотермических реакций при детонационном горении является скачкообразное изменение параметров состояния вещества,  в  первую  очередь  давления, что  ведет  к  повышению  температуры  вещества  до  значений,  повышающих  температуру  самовоспламенения. Процессы  распространения  давления  знчительно  более  быстрые  по  сравнению  с  процессами  нагрева  за  счет  теплопроводности.

Скорость детонации есть скорость распространения детонационной волны во взрывчатом веществе. Скорости  распростране­ния детонационной  волны  достигают 1-5 км/с в газовых смесях и  8-9 км/с в конденсированных ВВ, т.е.  значительно  превосходят  скорости  звука  в  этих  средах.

Продукты детонации оказываются под большим давле­нием, что обуславливает соответствующие последствия взрыва - разлет элементов разрушенных конструкций, звуковой эффект и др. Возникшее  в  зоне  взрыва  высокое  давление  приводит  к  распространению  зоны  высокого  давления  и  в  окружающей  воздушной  среде. Распространению  зоны  высокого  давления   в  окружающей  воздушной  среде  происходит  в  виде  ударной  волны. Причем  повышение  давления   в  окружающей  среде   происходит  в  виде  распространяющегося  резкого  скачка,  называемого  фронтом  ударной  волны. 

Скачок  давления во фронте ударной волны   при  взрывах газовоздушных смесей на открытом воздухе в неблагоприятных условиях может находиться  в  диапазоне  от 100 кПа до 2 Мпа. При взрывах конденсированных ВВ это  давление  может достигать значительно  более  высоких  значений,  измеряемых  даже  ГПа.

Непосредственными причинами взрывов химических  взрывчатых  веществ могут быть любые физические явления, вызывающие нарушение устойчивого состояния  вещества. К таким  явлениям   относятся изменение темпе­ратуры, химические реакции, резкие внешние воздействия (удар, трение), ударная волна другого взрыва и т.п..

5. Взрывчатые   вещества.

6. Определение взрывчатых веществ.

Существует много веществ, в которых в том или ином виде запасено большое количество энергии, например в виде внутримолекулярных или межмолекулярных связей. В нормальных условиях эти вещества достаточно устойчивы и могут находиться в твердом, жидком, газообразном или аэрозольном состоянии. Однако, в результате оказания инициирующего воздействия (теплом, трением, ударом или каким- либо другим способом) в них запускаются экзотермические процессы, протекающие с большой скоростью и приводящие к большому выделению энергии. Обычно говорят, что произошло взрывчатое превращение, а сами вещества называют взрывчатыми веществами или кратко ВВ.

Твердые и жидкие ВВ имеющие  в своем составе химически нестабильные соеди­нения, а также восстановители или окислители либо в виде однородного вещества, либо в виде смеси нескольких веществ, называют конденсированными ВВ.

Газообразные энергоносители представляют собой гомогенные смеси горючих газов (паров) с газообразными окислите­лями, либо нестабильные газообразные соединения, склонные к разложению в отсутствие окислителей (например, ацетилен). В этих газообразных веществах при взрывах протекают экзотермические реакции окисления или реакции разложения нестабильных соединений.

Участвующие в химическом взрыве аэровзвеси состоят из мелкодис­персных горючих жидкостей (туманов) или твердых веществ (пыли) в окис­лительной среде (обычно в воздухе). Источником энергии в этом случае служит тепло их сгорания.

К взрывчатым могут быть отнесены любые вещества, способные к взрывчатому превращению. Однако на практике к ВВ относят специальные группы ве­ществ, которые отвечают определенным требованиям:

1.Достаточно высокое содержание энергии в единице массы и большая мощность развиваемая при взрыве, обусловленная скоростью процесса.

2.Определенные пределы чувствительности к внешнему воздейс­твию, обеспечивающие как достаточную безопасность, так и легкость воз­буждения взрыва.

3.Способность в течение длительного периода сохранять свои свойс­тва.

4.Доступность исходных материалов, технологичность и безопасность в производстве.

5.Специальные свойства, зависящие от характера применения (например, нетоксичность продуктов взрыва).

7. Классификация конденсированных взрывчатых веществ.

Конденсированные ВВ принято делить на 4 группы:

-инициирующие - предназначены для возбуждения взрывчатого превра­щения в ВВ других групп (гремучая ртуть, азид свинца, тетразен);

-бризантные - используемые в разрывных зарядах для боеприпасов, для средств разрушения при добыче полезных ископаемых и др. Преиму­щественным видом их превращения является детонация. К ним относятся однородные ВВ (тринитротолуол, нитроглицерин, пироксилин и др.) и не­однородные - механические смеси (аммониты, динамиты и др.);

-метательные  (чаще всего это пороха, использующиеся в качестве метательных зарядов для огнестрельного оружия); их взрывчатое превраще­ние – взрывное  горение;

-пиротехнические составы.

Различают фугасное и бризантное действие ВВ. Мерой фугасного действия служит объем воронки, образованной взрывом 1 кг ВВ.

Под бризантным действием понимают способность ВВ дробить соприка­сающуюся среду. Эта способность зависит от детонационного давления и времени его действия.

По своему составу конденсированные ВВ можно подразделить на смеси и однородные (гомогенные или унитарные) вещества.

Рассмотрим некоторые вещества, представляющие собой смеси.

Черный порох представляет собой смесь калиевой селитры (KNO3) с углем. Эти вещества представляют собой порошки, смесь которых крайне опасна и возгорается со взрывом при малейшем воздействии теплом или трением. Для получения требуемой скорости сгорания в смесь добавляется сера. Первым используемым на практике ВВ был черный порох. В настоящее время пороха используют в качестве метательных ВВ.

Ракетные твердые топлива относятся к тому же классу ВВ, что и пороха. Существует большое количество отличающихся по своему составу смесей, используемых в качестве ракетных  топлив. Их основными компонентами являются: порошки металлов (Al, Be, B, Mg) или их гидридов (AlH3, LiH, MgH ), окислители (например перхлорат аммония - NH3ClO4), нитраты (например нитрат калия - KNO3) и др. составляющие.

Аммониты представляют собой довольно большую группу веществ, широко используемых в промышленности (горнодобывающей, строительной и др. отраслях) и относящихся к классу бризантных ВВ. Как правило это смеси окислителя (аммониевой селитры - NH3NO3) с органическими веществами (угольная или мучная пыль, торф, опилки) - динамоны, с порошками металлов (например, алюминия) -аммонал, с тротилом - аматол, и др.

Однородные ВВ состоят из одного химического соединения, в состав молекулы которого входят составные части, например, играющие роль и горючего и окислителя. Наибольшее распространение в качестве таких ВВ получили органические нитросоединения. К однородным ВВ относятся:

1) Пироксилин и бездымный порох. Эти вещества относятся к классу метательных ВВ. Пироксилин (азотнокислый эфир целлюлозы или нитрат целлюлозы - C6H7O2(ONO2)3) получается при нитровании целлюлозы (хлопка) азотной кислотой. Внешне сохраняет вид волокон хлопка с повышенной хрупкостью. В настоящее время используется как сырье для изготовления баллистных порохов. Бездымный порох используется в качестве топлива реактивных снарядов для “Катюш” и минометов.

2) Гексоген (циклотриметилентринитроамин - (CH2NO2)3) и тротил (тринитротолуол - C6H2CH3(NO2)3) относятся к классу бризантных ВВ и используются для начинки боеприпасов.

8. Газовоздушные смеси.

Газовоздушные смеси (ГВС) образуются на ряде производств в нор­мальных или аварийных условиях и могут стать источником очень мощных взрывов. Наиболее опасны взрывы смесей с воздухом углеводородных газов (метана, пропана, бутилена, бутана, этилена и др.), а также паров воспламеняю­щихся жидкостей.

Взрывы ГВС могут происходить во внутренних полостях оборудования и трубопроводов, в помещениях (зданиях) в результате утечки газа, в емкостях для хранения и транспортировки взрыво- и пожароопасных веществ (резервуарах, газгольдерах, цистернах, грузовых отсеках танкеров) или на открытом пространстве при разрушении газопроводов, разливе и испарении жидкостей. Взрывы горючих газов с воздухом с тяжелыми последствиями происходят на шахтах.

Вероятность взрыва ГВС и его опасность определяются:

-пределами взрывной концентрации паров жидкостей и газов (при ко­торых может возникнуть детонация) в процентах к объему ГВС, напри­мер, пропан 3-7%; пропилен 3.5-8.5%; этан 4.0-9.2%;

-температурой воспламенения - нижним пределом температуры, при которой  возможно  их  воспламенение  от постороннего источника зажигания ( ацетон -18оС, спирт 13оС, бензол -11оС );

-плотностью паров и газов по отношению к плотности воздуха ( аце­тон 2, ацетилен 0,9, метан 0,55, бутан 2  );

-температурой самовоспламенения ( ацетон 610оС, бензин 150оС, эти­ловый спирт 465оС);

-минимальной энергией зажигания или эквивалентом критической энергии электрической искры, необходимой для инициирования детонации.

Вероятность взрыва ГВС зависит от целого ряда обстоятельств. Статистика показывает, что  при авариях с образованием облака ГВС на открытом пространстве, случаи взрыва, случаи возникновения только горения (пожаров) и случаи отсутствия воспламенения равновероятны.

Воспламенение облака ГВС происходит при наличии источника зажигания. Первоначально скорость распространения пламени относительно не велика и составляет для большинства углеводородных газов 0.32-0.40 м/с. При столь малых скоростях горения образования детонационной  волны в  ВВ  не происходит. Однако в реальных условиях на процесс горения оказывают влияние множество факторов, вызывающих турбулизацию фронта пламени и ускорение его распространения.

Применительно к случайным промышленным взрывам при достижении скоростей распространения пламени 100-300 м/с возникает дефлаграционное горение, при котором генерируются взрывные волны с максимальным  разрушающим  избыточным давлением 20-100 кПа. Продолжительность горения до достижения взрывного режима  для газов составляет около 0.1 – 0.2 с. При дальнейшем ускорении горения дефлаграционые процессы могут перерасти в детонационные, скорость распространения которых значительно превышает скорость звука в воздухе и достигает 1-5 км/с.

Переходу к детонации способствуют различные препятствия на пути распространения пламени (строения, предметы, пересеченная местность).

(Детонация ГВС может произойти и без стадии дефлаграционного горения, однако в этом случае необходим соответствующий источник энергетического воздействия -достаточный электрический разряд, взрыв детонатора и др.).

При больших объемах горючих газовых смесей, наличии источников турбулизации фронта пламени и отражении детонационной волны от препятствий давление за очень короткий промежуток времени (~1мс) достигает высоких значений (~1,5 МПа).

9. Пыль и пылевоздушные смеси.

Взрывы пыли (пылевоздушных смесей - аэрозолей) представляют одну из основных опасностей на производстве. Взрывы пыли происходят в ограниченном пространстве - в помещениях зданий, внутри оборудования, в штольнях шахт. Возможны взрывы пыли на мукомольном производстве, на  зерновых элеваторах (мучная пыль), при обращении с красителями, серой сахаром, другими пищевыми продуктами, производстве пластмасс, лекарственных препаратов, на установках дробления топлива (угольная пыль), в текстильном производстве.

Понятие промышленные пыли включает в себя тонкие дисперсии с размерами частиц менее 800 мкм. Взрывы, в основном, происходят по дефлаграционному механизму. Переход к детонации возможен в вытянутых помещениях за счет турбулизации процесса горения в  облаке пылевоздушной смеси (ПВС), например, в штольнях шахт, на конвейерных линиях зернохранилищ.

Взрыв ПлВС возможен только при наличии концентрации пыли в воздухе не ниже определенного предела, измеряемого в г/м.куб: алюминий 58, уголь и сахар 35, резина 25, полиуретан 30 и т.д.

По степени пожаровзрывоопасности все промышленные пыли делятся на 4 класса:

1 класс - наиболее взрывоопасные пыли с НКПР равным 15 г/м.куб и ниже (сера 2,3; нафталин 2,5). НКПР - нижний концентрационный предел распространения пламени;

2 класс - взрывоопасные пыли с НКПР от 16 до 65 г/м.куб (алюминий 58, овес 30.2, крахмал картофельный 40.3);

3 класс- наиболее пожароопасные пыли - с температурой воспламе­нения до 250 оС ;

4 класс - пожароопасные пыли - с температурой воспламенения >250 оС .

Температура самовоспламенения пыли равна в среднем 500оС. Пыль, находящаяся в слоях воспламеняется при более низкой температуре, чем облако пыли - разница достигает 200оС, причем, чем толще слой пыли, тем ниже температура ее самовоспламенения. Пыль в слоях не взрывается. Однако, если в слое пыли возникнет горение (тление), то конвективные потоки горячих газов поднимают пыль в воздух, образуется пылевоздушная смесь, которая может взрываться. Максимальное давление взрыва ПВС лежит в пределах от 700 до 500 кПа (5-7 атм). Опасность взрыва ПВС возрастает с уменьшением размеров частиц пыли.

10.Ударная    волна    и    характеризующие    ее   параметры

Определяющим  параметром  при  характеристике  взрыва  является  образующаяся  и  распространяющаяся  в  окружающем  пространстве  воздушная ударная  волна.

Рассмотрим  облако  взрывоопасной  смеси   в  окружающем  воздушном  пространстве.  До  момента  возгорания  давление  в  объеме  облака  равно  атмосферному.  При  сгорании  (взрыве)  облака  в  его  объеме  давление  возрастает,  преграды  с  окружающей  средой  нет,  и  область  высокого  давления  увеличивается  в  объеме,  а  давление  внутри  нее  уменьшается (рис.1). Распространение  области  сжатия  воздуха  происходит  со  сверхзвуковой  скоростью   и  получило  название  воз­душ­ной удар­ной  вол­ны — ВУВ. По­вер­хность, ко­то­рая от­де­ля­ет сжа­тый воз­дух от не­воз­му­щен­но­го, на­зы­ва­ет­ся фрон­том удар­ной вол­ны.

При  про­хож­де­нии фрон­та удар­ной вол­ны че­рез воз­дух в очень уз­кой зо­не  скач­ком воз­рас­та­ют дав­ле­ние, тем­пе­ра­ту­ра и плот­ность, а  воздух за фрон­том на­чи­на­ет дви­гаться  в  сторону  области  пониженного  давления. Ско­ро­сть  движения  воздуха   ме­нь­ше ско­ро­сти  движения  фрон­та  ВУВ. По­сле то­го как фронт удар­ной вол­ны про­хо­дит дан­ную точ­ку про­странс­тва, дав­ле­ние в ней по­сте­пен­но сни­жа­ет­ся до ат­мо­сфер­но­го. В да­ль­ней­шем дав­ле­ние про­до­лжа­ет уме­нь­ша­ть­ся и ста­но­вится ни­же ат­мо­сфер­но­го, а воз­дух на­чи­на­ет дви­га­ть­ся в об­рат­ную сто­ро­ну. По­сте­пен­но дав­ле­ние вы­рав­ни­ва­ет­ся с ат­мо­сфер­ным и дейс­твие воз­душ­ной удар­ной вол­ны в дан­ной точ­ке пре­кра­ща­ет­ся (рис.2). Вре­мя, в те­че­ние ко­то­ро­го дав­ле­ние пре­вы­ша­ет ат­мо­сфер­ное, на­зы­ва­ет­ся фа­зой сжа­тия, а вре­мя дейс­твия по­ни­жен­но­го дав­ле­ния — фа­зой  раз­ре­же­ния. Основ­ные раз­ру­ше­ния про­ис­хо­дят в фа­зе сжа­тия, по­это­му дейс­твие фа­зы раз­ре­же­ния обыч­но не учи­ты­ва­ет­ся.

Ударная волна имеет два основных отличия от звуковой волны:

параметры среды в ней (давление, температура, плотность) изменяются практически скачком;

скорость ее распространения превышает скорость звука в невозмущенной среде.

 

             P


               O                                                                                                                   R

                      r

О  -  центр  облака,  r -  первоначальный радиус  облака,  R- расстояние  от  места  взрыва,  Р -  давление  во  фронте  волны

Рис.1. Давление  во  фронте  воздушной  ударной  волны  как  функция  расстояния  от  места  взрыва

  P


 

 Pф DP


                                                  

     Po               t+                                               t -


Рис.2. Изменение давления в некоторой точке пространства  при  прохождении через нее  ударной волны.

Рассмотрим  параметры  ВУВ.

До прихода волны давление в точке определялось атмосферным давлением P0. В момент прихода фронта волны  давление возрастает на величину,  равную  DPф. После скачка давление начинает падать и через промежуток времени t достигает величины P0. Дальнейшее снижение давления приводит к образованию в рассматриваемой точке разрежения с амплитудой DP- , после чего рост давления возобновляется и оно снова достигает величины P0. Период t+  называется фазой сжатия, а  t- - фазой разрежения.

По мере удаления от места взрыва происходит постепенное “затухание” ударной волны. При этом уменьшаются амплитуды DPф и  DP-_, уменьшаются  крутизна скачка и крутизна спада давления, увеличиваются интервалы t+  и t-, уменьшается скорость распространения  ударной волны и она постепенно трансформируется в звуковую. Скорость “затухания” ударной волны зависит от состояния среды, в которой эта волна распространяется, и от расстояния до места взрыва. 

Поражающее  действие  ВУВ  определяется  следующими  параметрами.

Первым    параметром,  определяющим  поражающее  действие  ВУВ,  является  избыточное  давление  DPф.

  Рассмотрим,  во-первых,  величину  DPф.  Энергосодержание  ВВ,  в  частности  ГВС,  одинаково  независимо  от  режима  горения,  однако  скорость  взрывчатых  превращений  разная  при  дефлаграции  и  при  детонации,  поэтому  при  детонации   объем  горящей  ГВС  не  успевает  увеличиться  и  давление  возрастает  до  значительно  больших  значений,  чем  при  дефлаграции.

DP(t)

                     DPmax


                                                                            t      

                                   t+                         

Характер  изменения  давления  при  взрывном  дефлаграционном  горении.

DP(t)

   DPmax

                                                                            t      

                                   t+                         

Характер  изменения  давления  при  взрывном  детонационном  горении.

Рис.3. Формы  фронта  ВУВ  при  дефлаграционном  и  детонационном  взрывах.

Скачок  давления  в  месте  взрыва  (а,  следовательно,  и  во  фронте  ВУВ)  при  детонационных  взрывах  ГВС  на  открытом  воздухе  может    достигать  2 Мпа. При  взрывах  конденсированных  ВВ  это  давление  может  достигать  значительно  более  высоких  значений,  измеряемых  даже  Гпа.

Во-вторых,  разница  в  скорости  процессов  приводит  к  тому,  что  продолжительность  нарастания  давления   (наклон  фронта)  разная.  При  детонации  продолжительность  нарастания    давления   ~ 10-3 c  для  воздушных  смесей  и  ~10-5 для конденсированных ВВ,  а  при  дефлаграции  ~ 0,1 – 0,2 с.

Формы  фронта  ВУВ  при  разных  режимах  взрывного  горения  показаны  на  Рис.3.

Вторым  параметром  ВУВ,  определяющим  ее  поражающее  действие, является  импульс давления i. Импульс характеризует суммарное воздействие избыточного давления  за  время t+  . Он числено равен площади под кривой избыточного давления на рис.2.

Поражающее действие ВУВ характеризуется также давлением скоростного напора Pск  воздуха. Скоростной напор возникает вследствие того, что частички воздуха во всех точках фронта ударной волны совершают резкое смещение по направлению от центра взрыва, а затем в обратную сторону. Тело, находящееся на пути смещения частиц воздуха, испытывает силовое воздействие.

 Скоростной напор вызывает отбрасывание предметов, оказавшихся на пути распространения ударной волны, т. е. оказывает на них метательное воздействие. В результате метательного воздействия незакрепленные предметы, а также люди могут быть отброшены на расстояние в несколько метров и, вследствие этого, получить повреждения и травмы по своей тяжести соизмеримые с последствиями воздействия  избыточного  давления ВУВ

Скоростной напор ВУВ приводит к разрушению (сламыванию) сооружений, имеющих значительную протяженность по сравнению с поперечным сечением (столбы электропередач, заводские трубы, опоры и т.п.)

Перечисленные параметры ударной волны (давление,  импульс, скоростной напор) являются основными, но не единственными параметрами, определяющими ее поражающее действие. Так  при встрече ударной волны с препятствием, например со стеной здания, давление вблизи от отражающей поверхности препятствия возрастает в несколько раз. Степень роста амплитуды зависит от угла наклона отражающей поверхности к направлению распространения ударной волны и от состояния среды  у отражающей поверхности,  от  других  величин.

Основ­ны­ми па­ра­ме­тра­ми воз­душ­ной удар­ной вол­ны будем  считать:

— из­бы­точ­ное дав­ле­ние во фрон­те вол­ны, DРф;

— вре­мя дейс­твия дав­ле­ния (фа­зы сжа­тия), t+;

— им­пульс,            

— ско­рость рас­про­стра­не­ния удар­ной вол­ны, v,

— давление  скоростного  напора  Рск.

11.Ударная волна ядерного взрыва.

Основные параметры, характеризующие ударную волну ЯВ, для заряда мощностью 30кт приведены в таблице 1.

В зависимости от высоты ЯВ распространение воздушной ударной вол­ны имеет свои особенности.

При наземном взрыве воздушная ударная волна имеет форму полусферы с центром в точке взрыва ядерного боеприпаса. Значения DPф в этом слу­чае будут примерно удваиваться по сравнению с воздушным взрывом.

При воздушном взрыве ударная волна, достигая поверхности земли, отражается от нее. Форма фронта отраженной волны близка к полусфере с центром в точке встречи ударной волны с поверхностью земли.

На близких расстояниях от проекции эпицентра на поверхность земли угол наклона падающей волны мал и точки, из которых исходят отраженные волны, перемещаются вдоль поверхности земли. Эта зона называется зоной регулярного отражения и ее радиус на поверхности земли Rэ примерно со­ответствует высоте воздушного взрыва H, т.е. Rэ=H.

Таблица 1. Параметры ударной волны ЯВ мощностью 30 кт

Параметры

Расстояние от центра взрыва (км)

     0,5        0,75       1,0       1,5       2,0       2,5

Избыточное давление во фронте,  кПа

Скорость фронта,   м/с

Скорость воздуха во фронте,  м/с

     135         75         48        26        17        12

      494       432       402      374      364       357

      310       189        124       68        43        31

На расстояниях Rэ>H в результате того, что отраженная волна дви­жется в воздухе уже прогретом падающей волной, она имеет большую ско­рость и постепенно "набегает" на падающую волну, образуя головную ударную волну. Сложение волн усиливает избыточное давление во фронте головной волны. Коэффициент усиления составляет от 1.6 до 3 крат и за­висит от состояния приземного слоя воздуха. Наибольшее повышение дав­ления наблюдается при взрывах зимой, когда приземный слой воздуха поч­ти не прогревается световым излучением.

При прогреве приземного слоя воздуха, например за счет его запы­ления, скачок давления во фронте головной волны уменьшается, но увели­чивается время фазы сжатия и скоростной напор движущихся частиц возду­ха. Это приводит к усилению метательного действия ударной волны.

На распространение ударной волны при ЯВ могут оказать существен­ное влияние: рельеф местности, характер застройки, лесные массивы, ме­теорологические условия. На расстояниях близких к месту взрыва амплитудные значения DPФ очень велики и к тому моменту, когда они снижаются до значений, указанных в таблице, т.е. до значений, представляющих практический интерес с точки зрения анализа степени разрушающего воздействия ударной волны ЯВ, зависимость DP(t)успевает видоизмениться.

Эти изменения состоят в увеличении t+ и t-, снижении скорости роста давления во фронте ударной волны и более плавному падению давления за фронтом волны. В связи с этими изменениями приведенным в таблице значениям DPФ для ЯВ соответствует больший удельный импульс, чем для аналогичных значений давления при взрыве конденсированного ВВ. Поэтому ударную волну ЯВ иногда называют “длинной волной”.

12.Поражающее действие взрыва.

Поражающими факторами при взрывах являются:  прямое воздействие фронта ударной волны; так называемые вторичные поражающие факторы, оп­ределяемые воздействием обломков разрушающихся зданий и сооружений, осколков породы или оболочки заряда и т.; сейсмическое воздействие подземных взрывов.

13.Воздействие поражающих факторов взрыва на здания и сооружения.

Воздействие ударной волны взрыва может привести к различным степеням разрушения (повреждения) зданий и сооружений. Эти степени условно подразделяют на слабые, средние, сильные и полные.

Слабые разрушения не выводят объект из строя, его эксплуатация может продолжаться. Повреждения или серьезные деформации получают от­дельные легкие элементы конструкций (окна, двери, крыша и т.п.). Уст­ранение слабых разрушений возможно в процессе текущего ремонта.

Средние разрушения соответствуют разрушению второстепенных конс­трукций и деформации (прогибу) основных ограждающих и несущих конс­трукций. Средние разрушения устранимы, но требуют прекращения эксплуа­тации объекта и проведения его капитального ремонта.

Сильные разрушения приводят к частичному разрушению стен колонн и перекрытий, а также к полному разрушению легких конструктивных элемен­тов.  Сильно разрушенные здания не восстановимы.  При таком разрушении объект в какой-то мере сохраняет свои контуры.  Некоторые его элементы могут быть использованы, например для ремонта других сооружений.

Полное разрушение сопряжено не только с прекращением возможности восстановления объекта, но и с резким изменением внешних очертаний объекта, с невозможностью использования его и его элементов в ка­кой-либо мере.

14.Воздействие поражающих факторов взрыва на людей.

Воздействие избыточного давления ударной волны на человека восп­ринимается как резкий удар, а скоростного напора - в виде толчка (отбрасывания) по направлению распространения ударной волны. При этом происходят разрывы крове и газонаполненных органов, возникают травмы конеч­ностей, ушибы, вывихи. По степени тяжести различают крайне тяжелые, тяжелые, средние и легкие поражения людей.

Крайне тяжелые поражения у людей возникают при избыточном давле­нии во фронте более 100 кПа. Эти поражения, как правило, заканчиваются смертельным исходом.  Они сопровождаются разрывами внутренних органов и сосудов, наполненных кровью (или другими жидкостями), или газом.

Тяжелые поражения человек получает при 60-100 кПа. К тяжелым поражениям относят сильные контузии, потерю сознания, внутренние кровотечения, кровотечение из ушей и носа.

Средние  поражения наступают  при 40-60 кПа. К ним относят контузию головного мозга, множественные вывихи, потерю слуха.

Легкие поражения, не требующие госпитали­зации, наступают  при 20-40 кПа.  К ним относят скоропроходящую головную боль, головокружение.

Воздействие скоростного напора (метательное действие взрыва) приводит к отбрасыванию людей на расстояния в несколько метров, что вызывает травмы по своим последствиям соизмеримые с воздействием давления. Помимо непосредственного поражения от воздействия ударной волны человек может пострадать от вторичных факторов взрыва (обломков разрушаемых зданий, осколков стекол и т.п.). Максимальному расс­тоянию такого поражения примерно соответствует 20 кПа.

15.Воздействие ударной волны на вооружение и технику.

Степень повреждения вооружения и военной техники под воздействием DPф может достигать следующих размеров:

слабые повреждения танков ( отрыв антенн, фар и другого наружного

оборудования)                                                                                            30-50 кПа;

полное разрушение танков                                                                           1-2  Мпа;

средние повреждения артиллерийских орудий                                          40- 70  кПа;

полное разрушение артиллерийских орудий                                              0.2-1 МПа;

выход из строя самолетов, вертолетов, ракет                                             10-30 кПа.

Метательное действие ударной волны, определяемое скоростным напором, является решающим для вывода из строя вооружения и военной техники (танков боевых машин, орудий, автомобилей и т.п.). Повреждения от удара о грунт при отбрасывании за счет метательного воздействия могут быть более значительными, чем от воздействия DPф.

16.Мероприятия по обеспечению взрывобезопасности.

Масштабы разрушений и уровни поражения при взрывах определяются количеством и скоростью высвобождения энергии. Состав конкретных мер, обеспечивающих требуемую степень  защищенности от воздействия поражающих факторов взрыва, определяется по результатам проведения исследования функционирования потенциально опасного объекта. При проведении исследования анализируются различные сценарии возникновения и развития аварий и различные виды возможных опасностей, а не только поражающее действие собственно взрыва. К таким опасностям может, например, относиться химическое или биологическое воздействие исходных хранящихся веществ или продуктов, получающихся в результате взрыва.

В ходе исследований проводятся расчеты по определению значений параметров, характеризующих поражающие факторы. Расчеты обычно ведутся для худшего сценария развития аварии.  По результатам исследований принимаются решения о составе мероприятий, направленных либо на исключение возможности возникновения аварии, либо на ограничение возможных поражающих факторов, либо на защиту от их воздействия.

Состав мероприятий в каждом конкретном случае уникален, однако их обобщенный перечень применительно к защите от опасности взрыва может быть представлен в следующем виде:

ограничение объемов единовременного накопления взрывоопасных веществ;

промежуточное хранение взрывоопасных веществ в производственных условиях;

рациональное размещение зданий и сооружений вблизи взрывоопасного объекта;

реорганизация технологических процессов, в которых используются взрывоопасные вещества;

создание надежных, взрывобезопасных конструкций оборудования и конструкций, устойчивых к воздействию ударной волны;

подготовка персонала к работе в условиях повышенной взрывоопасности.

Полностью исключить накопление взрывоопасных веществ в условиях производства невозможно. В то же время очевидно, что с увеличением объемов их накопления возрастает степень тяжести возможных последствий аварийных взрывов. Для ограничения запасов веществ, используемых в ходе производства или получающихся в ходе технологических процессов, применяют различного рода нормативы.

В тех случаях, когда по нормативам накапливать требуемые объемы веществ не допускается, а по условиям производства необходимы большие запасы, на безопасном расстоянии создаются промежуточные (развязочные) хранилища, выполняющие буферные функции. В любом случае необходимость создания складов как основного, так и промежуточного хранения должна быть научно и технологически обоснована для каждого конкретного производства.

Рациональное размещение промышленных объектов на территории предприятия необходимо для того, чтобы взрывы и пожары не привели к разрушению потенциально опасных объектов, например с запасом ядовитых веществ. В зонах высокого уровня поражения часто находятся здания заводоуправлений, проектно-конструкторских и других подразделений, которые не связаны с эксплуатацией потенциально опасных объектов и могут быть без ущерба для технологического процесса размещены на безопасном расстоянии.

Особого внимания в этом отношении заслуживают различного рода пульты управления, т.к. с одной стороны их обычно требуется приблизить к месту реализации управляемым процессом, а с другой стороны именно такое приближение создает опасность для диспетчеров, выполняющих управление в случае аварии. Для снижения возможности поражения управленческого персонала в случае аварии обычно применяют целую систему мер, включающих в себя: максимально возможное удаление пультов управления от потенциально опасного участка и их размещение вне зоны вероятного распространения газового облака; вывод на пульты управления, расположенные в опасной зоне, минимально необходимой информации и соответствующее сокращение персонала, имеющего доступ в эту зону; устройство помещений  для пультов управления повышенной пожаро- и взрывозащищенности; оснащение пультов управления средствами сигнализации и противоаварийной защиты.

Возможных направлений реорганизации технологических процессов достаточно много. Обычно они направлены на исключение потенциально опасные вещества из производственного процесса, например путем замены на другие, менее опасные, или на изменение условий использования веществ,  в которых они не могут гореть или взрываться. Из других направлений можно отметить: секцонирование и вынос наиболее опасных процессов из помещений, флегматизацию опасных веществ, сокращение числа производственных операций с участием персонала и др.

Создание надежных конструкций, которые исключают возможность взрыва или снижают его вероятность, достаточно сложная задача, над решением которой работают специалисты многих производственных отраслей. Для каждого конкретного вида оборудования технические решения по  повышению его надежности специфичны. Среди наиболее часто используемых можно отметить: устройство взрывонепроницаемых оболочек, устройство защитных кожухов с повышенным давлением внутри, защита погружением в масло, защита песком и др.

Подготовка персонала должна проводиться по двум основным направлениям: знание своих функциональных обязанностей и готовность к действиям в аварийных ситуациях; повышение уровня понимания существа технологических процессов и возможных вариантов их развития при тех или иных условиях.

 

Перечень контрольных вопросов:

1. Физическая природа взрывов и виды взрывного горения. Причины взрывов.

2. Характеристика процесса взрыва конденсированных ВВ, ГВС и ПлВС.

3. Ударная волна конденсированных ВВ и ГВС, характеризующие ее параметры и их изменение во времени.

Вместе с этой лекцией читают "Неопухолевые заболевания селезенки".

4. Особенности ударной волны ЯВ.

5. Поражающее действие ударной волны на людей.

6. Воздействие ударной волны на здания и сооружения и способы оценки возможной степени их разрушения.

Литература:

  1. Атаманюк В.Г.  и др.  Гражданская оборона.  Учебник для втузов. Высшая школа,-М., 1986
  2. Котляревский и др.Аварии и катастрофы, ч.1и2, М. , Издательство АСВ / 1995 г.
  3. Конспект  лекций  по  курсу  “Основы  ГО  в  ЧС”,  кафедра  ГО  МГТУ,  2000 г.
  4. Бесчастнов М.В.  Промышленные взрывы. Оценка и предупреждение М. Химия 1991.


[1] Стехиометри­ческим называется такой состав смеси, в которой горючее и окислитель находятся в пропорции, необходимой для их полного взаимодействия в процессе окисления.

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5259
Авторов
на СтудИзбе
421
Средний доход
с одного платного файла
Обучение Подробнее