GL_08_Стереохимия (О.А. Реутов, А.Л. Курц, К.П. Бутин - Органическая химия в 4-х томах (Word))

2019-05-11СтудИзба

Описание файла

Файл "GL_08_Стереохимия" внутри архива находится в папке "О.А. Реутов, А.Л. Курц, К.П. Бутин - Органическая химия в 4-х томах (Word)". Документ из архива "О.А. Реутов, А.Л. Курц, К.П. Бутин - Органическая химия в 4-х томах (Word)", который расположен в категории "". Всё это находится в предмете "органическая химия" из 5 семестр, которые можно найти в файловом архиве МГУ им. Ломоносова. Не смотря на прямую связь этого архива с МГУ им. Ломоносова, его также можно найти и в других разделах. .

Онлайн просмотр документа "GL_08_Стереохимия"

Текст из документа "GL_08_Стереохимия"

111


ГЛАВА 8

Стереохимия соединений углерода

8.1. Введение

8.2. Оптическая активность и хиральность

8.2.1. Оптическая активность

8.2.1.а. Оптически активные вещества

8.2.1.б. Физические причины оптической активности

8.2.1.в. Зависимость угла вращения от условий измерения

8.2.2. Хиральные молекулы

8.2.2.а. Точечные группы симметрии

8.2.2.б. Симметрийное определение хиральности

8.2.2.в. Правила классификации молекул по симметрии

8.2.2.г. Типы хиральности

8.2.2.д. Хиральность макроциклических молекул

8.3. Конфигурация и конформация

8.3.1. Абсолютная и относительная конфигурация

8.3.2. Проекции Фишера

8.3.3. Система Кана-Ингольда-Прелога

8.3.4. Соединения с несколькими хиральными центрами

8.3.5.Энантиомерные конформации

8.4. Методы определения конфигурации

8.4.1. Определение абсолютной конфигурации

8.4.1.а. Дифракция рентгеновских лучей

8.4.1.б. Теоретический расчет оптического вращения

8.4.2. Определение относительной конфигурации

8.4.2.а. Химическая корреляция

8.4.2.б. Установление относительной конфигурации с помощью физических методов

8.5. Методы разделения энантиомеров

8.5.1. Расщепление через диастереомеры

8.5.2. Хроматографическое расщепление

8.5.3. Механическое расщепление

8.5.4. Ферментативное расщепление

8.5.5. Установление оптической чистоты

8.6. Асимметрический синтез и катализ

8.6.1. Энантиотопные и диастереотопные атомы, группы и поверхности

8.6.2. Синтезы на основе карбонильных соединений

8.6.2.а. Асимметрическое восстановление карбонильной группы

8.6.2.б. Асимметрическое алкилирование карбонильной группы

8.6.3. Присоединение к двойным связям С=С

8.6.4. Асимметрический синтез аминокислот

8.6.5. Синтезы в хиральных средах

8.6.6. "Абсолютный" асимметрический синтез

8.6.7. Асимметрическая индукция аксиальной и планарной хиральности

8.6.8. Асимметрический катализ



8.1. Введение

Стереохимия изучает влияние пространственного строения молекул на химические и физико-химические свойства соединений. Стереохимия - это “химия в пространстве”; она имеет свой собственный подход к изучению молекул, собственную теоретическую базу, специальную терминологию для описания стереохимических явлений, ее методы применимы ко всем без исключения молекулярным объектам: органическим, неорганическим, металлоорганическим.

Под термином “пространственное строение” подразумевают положение ядер составляющих данную молекулу атомов в пространстве. Положение же электронов (т.е. распределение электронной плотности в молекуле) называют электронным строением. Очевидно, что пространственное и электронное строение молекулы тесно взаимосвязаны: при изменении электронного строения меняется положение ядер. Ярким примером является рассмотренное в гл.2 резкое изменение электронного строения метана при переходе этой молекулы из обычной тетраэдрической в “неприродную” плоскую форму. В стереохимии, как правило, внимание концентрируется на положении ядер, а электроны в явном виде рассматриваются редко, т.е. обычно допускается, что электроны оптимально (т.е. с наибольшим связывающим эффектом) распределены в пространстве вокруг ядер. Например, молекула NH3 имеет приблизительно тетраэдрическое электронное строение (с учетом неподеленной пары), но по положению ядер является тригональной пирамидой (инвертирующейся). Подавляющее большинство органических молекул имеет трехмерную структуру, хотя известны и линейные (одномерные), и плоские (двухмерные) молекулы. Примером линейной молекулы является ацетилен, примером плоской молекулы - бензол. В точном смысле слова и ацетилен, и бензол трехмерные молекулы, ибо они имеют “толщину”, сравнимую по величине с длиной (и шириной). Например, диаметр молекулы бензола около 7 , а “толщина” около 3,5 . “Толщина” бензольного кольца обусловлена исключительно размерами электронной оболочки, но его диаметр - на 70% расстоянием между ядрами атомов. Ядерный остов практически не имеет толщины, и поэтому, если не учитывать электроны, молекулу бензола можно считать плоской.

В теоретической стереохимии атомы рассматриваются как безразмерные точки, и структура молекул описывается пространственной группой таких точек, которые образуют шестиугольник в случае бензола, прямую линию в случае ацетилена, тетраэдр в случае метана и т.д. Благодаря такому упрощению можно легко провести классификацию молекул по топологии симметрии и найти аналогию между, казалось бы, совершенно разными структурами, например, между метаном и адамантаном (см. раздел 8.2.2.г).

В трехмерном пространстве возникает явление, которое называется стереоизомерия. Стереоизомеры - это соединения, построенные из одинакового набора атомов с одинаковой последовательностью химических связей, но отличающиеся расположением атомов в трехмерном пространстве. Подобные изомеры для плоских молекул, например, цис- и транс-изомеры алкенов, обычно называют геометрическими изомерами (гл.5).

Основными стереохимическими понятиями являются хиральность, конфигурация и конформация, смысл которых будет рассмотрен в следующих разделах.

8.2. Оптическая активность и хиральность

Понятие о хиральных объектах (от греч.  - рука) было введено в конце XIX в. Кельвином. Согласно определению, любая геометрическая фигура или группа точек называется хиральной, если отображение в идеальном плоском зеркале не может быть совмещенным с нею самою. В химию термин хиральность прочно вошел лишь в 1970-х годах в результате теоретического изучения оптически активных веществ. Явление оптической активности известно с начала XIX в.; в его изучение главный вклад внесли французские ученые Д.Араго, Ж.Био, Л.Пастер, Э.Коттон, О.Френель.

8.2.1. Оптическая активность

Оптическая активность - это способность среды (кристаллов, растворов, паров вещества) вызывать вращение плоскости поляризации проходящего через нее оптического излучения (света).

Впервые оптическая активность была обнаружена в 1811 г. Д.Араго в кристаллах кварца. В 1815 г. Ж.Био открыл оптическую активность чистых жидкостей (скипидара), а затем растворов и паров многих, главным образом органических веществ. Ж.Био установил, что поворот плоскости поляризации происходит либо по часовой стрелке, либо против нее, если посмотреть навстречу ходу лучей света и в соответствии с этим разделил оптически активные вещества на правовращающие (вращающие положительно, т.е. по часовой стрелке) и левовращающие (отрицательно вращающие) разновидности. Наблюдаемое значение угла поворота плоскости поляризации в случае раствора связано с толщиной образца (l) и концентрацией оптически активного вещества (С) следующей формулой:

 = [] . l . С (8.1)

Коэффициент [] называется удельной оптической активностью или удельным вращением.

Оптически активными веществами называют лишь те вещества, которые проявляют естественную оптическую активность. Существует также и искусственная или наведенная оптическая активность. Ее проявляют оптически неактивные вещества при помещении в магнитное поле (эффект Фарадея). Различить естественную или наведенную оптическую активность довольно просто: если линейно поляризованный свет (см. раздел 8.2.1.б), прошедший через слой вещества с естественной оптической активностью отражается и проходит через вещество в обратном направлении, то исходная поляризация света восстанавливается (суммарный угол вращения  = 0). В среде же с наведенной оптической активностью в аналогичном опыте угол поворота удваивается. В дальнейшем мы будем рассматривать лишь вещества с естественной оптической активностью и для краткости будем их называть просто “оптически активными веществами”.

8.2.1.а. Оптически активные вещества

Оптически активные вещества подразделяются на два типа.

К первому типу относятся вещества, которые оптически активны лишь в кристаллической фазе (кварц, киноварь). Ко второму типу относятся вещества, которые оптически активны в любом агрегатном состоянии (например, сахара, камфора, винная кислота). У соединений первого типа оптическая активность является свойством кристалла как целого, но сами молекулы или ионы, составляющие кристалл, оптически неактивны. Кристаллы оптически активных веществ всегда существуют в двух формах - правой и левой; при этом решетка правого кристалла зеркально симметрична решетке левого кристалла и никакими поворотами и перемещениями левый и правый кристаллы не могут быть совмещены друг с другом. Оптическая активность правой и левой форм кристаллов имеет разные знаки и одинакова по абсолютной величине (при одинаковых внешних условиях). Правую и левую форму кристаллов называют оптическими антиподами.

У соединений второго типа оптическая активность обусловлена диссимметрическим строением самих молекул. Если зеркальное отображение молекулы никакими вращениями и перемещениями не может быть наложено на оригинал, молекула оптически активна; если такое наложение осуществить удается, то молекула оптически неактивна. (Под зеркалом понимают отражатель, лежащий вне молекулы, и отражение дает отображение всей молекулы). Следует особо подчеркнуть, что необходимо употреблять выражение “диcсимметрическое строение”, а не “асимметрическое строение”. Асимметрические молекулы не имеют никаких элементов симметрии (кроме операции идентичности; см.раздел 8.2.2.в), тогда как в дисcимметрических молекулах некоторые элементы симметрии остаются. Диcсимметрия есть нарушение максимальной симметрии объекта.

Мы интуитивно чувствуем, что молекула монозамещенного метана СН3Х должна выглядеть “менее симметрично”, чем молекула незамещенного метана СН4, молекула дизамещенного метана СН2ХY еще менее симметрично, а молекула тризамещенного метана СНXYZ (XYZ) еще менее симметрично. В этом ряду возрастает степень диcсимметричности, но полностью асимметричным можно назвать лишь тризамещенный метан.

Молекула бромхлофторметана () асимметрична, а молекула транс-1,2-дихлорциклопропана () лишь диcсимметрична, т.к. имеет ось симметрии второго порядка (С2), но оба вещества оптически активны, т.к. не идентичны своим зеркальным отображениям.

Оптическую активность проявляют все асимметрические молекулы, но далеко не все диссимметрические молекулы. Так, диcсимметрическая молекула цис-1,2-дихлорциклопропана (), имеющая плоскость симметрии , проходящую через атом углерода СН2-группы и середину связи С12 перпендикулярно плоскости кольца (и поэтому не асимметрическая), диссимметрична, но оптически неактивна. Зеркальное отображение в этом случае совместимо с оригиналом:

Следовательно, оптическая активность связана лишь с определенным видом диcсимметрии (см.раздел 8.2.2), а именно с дисcимметрией, обусловливающей несовместимость объекта с его зеркальным отображением. Такой же вид диссимметрии, как сказано выше, получил название хиральность. Хиральные объекты относятся друг к другу как правая и левая рука, или винты с правой и левой резьбой, т.е. они несовместимы в пространстве и представляются как зеркальные отображения друг друга. Оптически активная молекула хиральна, а оптически неактивная ахиральна, однако если молекулу нельзя совместить с ее зеркальным отображением, то зеркальное отображение соответствует другой, отличной молекуле, которую, в принципе, можно синтезировать. Синтезированное зеркальное отображение хиральной молекулы будет ее реальным оптическим изомером (не рекомендуется употреблять термин оптический антипод, как в случае кристаллов). Чистое оптически активное соединение имеет два и только два оптических изомера (т.к. каждому объекту соответствует лишь одно зеркальное отображение). Оптические изомеры называются энантиомерами (или иногда энантиоморфами). Удельное вращение ([] в формуле (1)) энантиомеров одинаково по абсолютной величине и противоположно по знаку: один энантиомер левовращающий, а второй правовращающий. Кроме знака вращения все другие физические и химические свойства энантиомеров в газовой фазе, а также в ахиральных жидких средах одинаковы. Однако, если жидкая среда хиральна (например, в раствор добавлен хиральный реагент или катализатор, или сам растворитель хирален) свойства энантиомеров начинают различаться. При взаимодействии с другими хиральными соединениями, отзывающимися на зеркальную изомерию молекул, энантиомеры реагируют с различными скоростями. Особенно ощутимо различие в физиологическом и биохимическом действии энантиомеров, что связано с энантиомерией биологических реагентов и катализаторов. Так, природные белки состоят из левых оптических изомеров аминокислот и поэтому искусственно синтезированные правые аминокислоты организмом не усваиваются; дрожжи сбраживают лишь правые изомеры сахаров, не затрагивая левые и т.д.

Общее правило состоит в том, что энантиомеры проявляют идентичные свойства в симметричном (ахиральном) окружении, а в несимметричном (хиральном) окружении их свойства могут изменяться, Это свойство используется в асимметрическом синтезе и катализе (см. раздел 8.6).

Смесь равных количеств энантиомеров, хотя и состоит из хиральных молекул, оптически неактивна, т.к. одинаковое по величине и противоположное по знаку вращение взаимно компенсируется. Такие смеси называют рацемическими смесями или рацематами. В газообразном состоянии, жидкой фазе и в растворах свойства рацематов обычно совпадают со свойствами чистых энантиомеров, однако в твердом состоянии такие свойства, как температура плавления, теплота плавления, растворимость, обычно отличаются. Например, рацемическая винная кислота плавится при 204-206С, а (+) или (-) -энантиомеры при 170С. Растворимость рацемической винной кислоты в воде в 6,7 раз ниже, чем растворимость чистых энантиомеров.

8.2.1.б. Физические причины оптической активности

В ахиральной среде два энантиомера имеют одинаковые химические и физические свойства, но их легко отличить друг от друга по специфическому взаимодействию со светом. Один из энантиомеров вращает плоскость поляризации линейнополяризованного (плоскополяризованного) света вправо, а другой энантиомер - на точно такой же угол влево. Возникает вопрос: почему только хиральные молекулы вращают плоскость поляризации?

Феноменологическую модель оптической активности предложил Френель еще в 1823 г. Она основана на волновой теории света и с позиций современной науки не является достаточно строгой. Тем не менее эта модель дает очень наглядное представление о причинах оптической активности и других явлениях, связанных с поглощением света хиральным веществом, в рамках классической электродинамики, поэтому ее часто используют и в настоящее время.

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5288
Авторов
на СтудИзбе
417
Средний доход
с одного платного файла
Обучение Подробнее